
Complex-valued Neurons Can Learn More but Slower
than Real-valued Neurons via Gradient Descent

Jin-Hui Wu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{wujh,zhangsq,jiangy,zhouzh}@lamda.nju.edu.cn

Abstract

Complex-valued neural networks potentially possess better representations and
performance than real-valued counterparts when dealing with some complicated
tasks such as acoustic analysis, radar image classification, etc. Despite empirical
successes, it remains unknown theoretically when and to what extent complex-
valued neural networks outperform real-valued ones. We take one step in this di-
rection by comparing the learnability of real-valued neurons and complex-valued
neurons via gradient descent. We show that a complex-valued neuron can ef-
ficiently learn functions expressed by any one real-valued neuron and any one
complex-valued neuron with convergence rate O(t−3) and O(t−1) where t is the
iteration index of gradient descent, respectively, whereas a two-layer real-valued
neural network with finite width cannot learn a single non-degenerate complex-
valued neuron. We prove that a complex-valued neuron learns a real-valued neu-
ron with rate Ω(t−3), exponentially slower than the O(e−ct) rate of learning one
real-valued neuron using a real-valued neuron with a constant c. We further verify
and extend these results via simulation experiments in more general settings.

1 Introduction

Complex-valued neural networks (CVNNs) utilize neuron models and operations in the complex-
valued domain and are good at handling many complicated scenarios. Pioneering works successfully
apply CVNNs to various areas, such as synthetic aperture radar image classification [1], acoustic
analysis [2], and magnetic resonance image reconstruction [3]. In these applications, input sig-
nals naturally contain phase information. CVNNs seem more suitable than real-valued neural net-
works (RVNNs) in phase-dependent tasks since empirical experiments and intuitive explanations
suggest that CVNNs can possess better data representations of phase information and grasp the
phase-rotational dynamics more accurately [4, 5].

Beyond the seemingly promising performance of CVNNs, many efforts have been devoted to the the-
oretical understanding of CVNNs. Most existing works demonstrate some desirable properties of
CVNNs such as universal approximation [6, 7], the minimum width for universal approximation [8],
boundedness and complete stability [9], most critical points not being local minimum [10], and
local-minimum-free conditions [11]. Some recent works demonstrate the approximation advantage
of CVNNs in phase-invariant tasks by proving that neuromorphic networks with complex-valued op-
erations can approximate radial functions with exponentially fewer parameters than RVNNs [11, 12].
However, those studies do not explain why CVNNs outperform RVNNs mostly in phase-dependent
tasks, particularly when considering the fact that there are functions that can be efficiently approx-
imated but not efficiently learned with gradient methods [13, 14]. Indeed, the general functional
difference between CVNNs and RVNNS remains unknown.
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In this paper, we take one step towards understanding when and to what extent one can benefit from
common learning paradigms using CVNNs rather than RVNNs. More specifically, we attempt to
identify the superiority and inferiority of CVNNs through the following fundamental questions

When CVNNs outperform RVNNs via gradient descent?
Can we learn everything with CVNNs without paying additional price?

We theoretically study the above two questions by focusing on learning a single neuron by op-
timizing the expected square loss via gradient descent under the setting of low-dimensional in-
puts and no bias term. Learning a single neuron, a simple and widely investigated learning prob-
lem [15, 16, 17, 18], is helpful to understand the difference between learning RVNNs and learning
CVNNs since the neural operations inside a fundamental neuron model include the key factors of
neural network learning. Furthermore, we conduct simulation experiments to verify our theories
and extend them to more general settings of high-dimensional inputs and with bias terms. Our
contributions are summarized in Table 1 and further explained as follows.

• Complex-valued neurons can learn more than real-valued neurons. We prove that using gra-
dient descent, a single complex-valued neuron can efficiently learn functions expressed by any
one real-valued neuron and any one complex-valued neuron with convergence rate O(t−3) and
O(t−1) in Theorems 1 and 2, respectively. In contrast, we show the lower bound of expressing
a non-degenerate complex-valued neuron with a two-layer RVNN in Theorem 4, which implies
that a two-layer RVNN with finite width cannot learn a single non-degenerate complex-valued
neuron. These results provide positive responses to the first question from at least two perspec-
tives. Firstly, CVNNs outperform RVNNs when dealing with phase-sensitive tasks. Secondly,
CVNN is always a conservative choice when we are unwilling to take the risk of failure.

• Complex-valued neurons learn slower than real-valued neurons. We present a lower bound
Ω(t−3) for learning functions expressed by any one real-valued neuron using a complex-valued
neuron via gradient descent in Theorem 6. This conclusion, together with the well-known linear
convergence of learning functions expressed by any one real-valued neuron using a real-valued
neuron [19], implies that CVNNs suffer from slower convergence than RVNNs when handling
simple phase-independent tasks. This phenomenon answers the second question and reveals the
additional price for learning everything with CVNNs.

Table 1: A summary of our contributions. The first column lists the target neurons. The second
and third columns represent the convergence rates of learning the target neurons using real-valued
neurons and complex-valued neurons via gradient descent, respectively.

Target Neurons Real-valued Neurons Complex-valued Neurons

Real-valued Neuron O(e−ct) [19] Θ(t−3) (Theorems 1 and 6)
Complex-valued Neuron Cannot Learn (Theorem 4) O(t−1) (Theorem 2)

The rest of this paper is organized as follows. Section 2 introduces related works. Section 3 details
our settings and notations. Section 4 demonstrates that complex-valued neurons can learn more than
real-valued neurons. Section 5 proves that complex-valued neurons learn slower than real-valued
neurons. Section 6 concludes our work with prospects.

2 Related Works

Complex-valued Neural Networks. CVNNs originate in the 1990s when parameters of networks
and the commonly used back-propagation algorithm are generalized to the complex-valued do-
main [20, 21, 22]. The motivation of CVNNs is at least threefold. From the representation perspec-
tive, CVNNs consider the phase information and model complex-valued problems more efficiently
and properly than RVNNs [23, 24, 25]. From the computation perspective, a complex-valued neuron
is capable of solving the exclusive-or problem and the detection of symmetry, whereas a real-valued
neuron cannot [26]. From the biological perspective, the recently proposed flexible transmitter neu-
ron [27], which has a natural complex implementation, formulates the communication between pre-
synapse and post-synapse precisely rather than considering only the pre-synapse in traditional MP
neuron [28]. CVNNs achieve better performance in versatile applications, especially those with
naturally phase-related signals, such as radio frequency signals [29], sonar signals [30], and audio
signals [31]. We refer to two surveys for more detailed discussions [4, 5].
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From the aspect of theories, several works provide preliminary support for CVNNs by proving fun-
damental properties of CVNNs, such as shallow CVNNs are universal approximators [6, 7], most
critical points are not spurious local minimum [10, 11], and CVNNs are bounded and completely sta-
ble [9]. These theoretical insights only consider CVNNs without comparison with RVNNs. Another
line of research verifies the superiority of CVNNs by comparing the approximation complexity of
RVNNs and CVNNs and finding that CVNNs can express radial functions more efficiently [11, 12].
This line of work only takes approximation into account and does not explicitly consider learning
processes, which is of more interest in practice. This work takes the first step toward analyzing and
comparing the learning behaviors of CVNNs and RVNNs.

Neuron Learning. Neuron learning is the simplest case of neural network learning, and existing
works mainly focus on learning real-valued neurons. Some studies demonstrate the possibility of
learning one real-valued neuron or a network using meticulously designed algorithms [32, 33, 34].
Later, researchers investigate the learnability of neurons using standard gradient methods. An expo-
nential convergence rate is established for learning one real-valued neuron with a real-valued neuron
under different assumptions [19, 35, 36, 37, 38]. We consider the problem of learning between one
real-valued neuron and one complex-valued neuron, as well as learning one complex-valued neu-
ron using a complex-valued neuron. The heterogeneity between real-valued and complex-valued
neurons makes the analysis of optimization behaviors more complicated.

3 Preliminaries

Notations. Suppose that the input dimension is an even number. For any vector x ∈ R2d, we denote
xi as the i-th coordinate of x. Let xC = (x1; . . . ;xd) + (xd+1; . . . ;x2d)i ∈ Cd be the folded
complex-valued representation of x, and xC = (x1; . . . ;xd) − (xd+1; . . . ;x2d)i is the complex
conjugate of xC. For any two vectors w,v ∈ R2d, θw,v = arccos(w⊤v∥w∥−1∥v∥−1) ∈ [0, π]
denotes the angle between w and v. For any x ∈ R, τ(x) = max{0, x} indicates the ReLU
activation function. Let Re(z) denote the real part of a complex number z. For any z ∈ C and ψ ∈
[0, π/2], σψ(z) denotes the real part of the symmetrical version of zReLU activation function [39],
i.e.,

σψ(z) =

{
Re(z) , θz ∈ [−ψ,ψ] ,
0 , otherwise ,

where θz represents the argument of z. For any proposition p, we use I(p) to represent the indicator
function of p, i.e., I(p) = 1 if p is true and I(p) = 0 otherwise. A table of frequently used notations
is provided at the beginning of Appendix A.

Learning a Single Neuron. We consider learning a target neuron with a learning neuron. A neuron
generally takes the form x → σψ(w;x), where the weight w ∈ R2d and phase ψ ∈ [0, π/2] indicate
learnable parameters, and we omit the bias term for technical reasons. This general formulation
includes a real-valued neuron with ReLU activation x → τ(w⊤x) and a complex-valued neuron
with zReLU activation x → σψ(w

⊤
CxC) as special cases. For any target neuron with parameters

(v, ψv), the learning process consists of finding a neuron with parameters (w, ψw) to minimize the
expected square loss

L(w, ψw) =
1

2
Ex∼N (0,I)

[
(σψw(w;x)− σψv (v;x))

2
]
, (1)

where the learnable parameter ψw occurs only when the learning neuron is complex-valued, and the
input x follows the Gaussian distribution N (0, I).

Learning Algorithm and Initialization. We utilize the projected gradient descent as the learning
algorithm, where the projection guarantees the constraint on phase ψ ∈ [0, π/2]. To minimize
a function f(x) with an initialization x0, projected gradient descent iteratively updates weights
along the negative gradient direction and projects the updated weights onto the constraint set, i.e.,
xt+1 = PQ(xt − ηt∇xf(xt)), where ηt represents the step size, Q denotes the constraint set, and
PQ indicates the projection operator defined by PQ(x0) = argminx∈Q ∥x − x0∥. We initialize
weights of neurons with Gaussian distribution, which includes most standard initialization schemes
in practice [40]. The learnable parameter of the zReLU activation is initialized with U(0, π/2), i.e.,
the uniform distribution on [0, π/2].
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4 Complex-valued Neurons Can Learn More

In this section, we provide theoretical support for the learning advantage of complex-valued neurons
by providing two positive learning scenarios for complex-valued neurons and one negative learning
result for real-valued neurons. This section is organized as follows. Subsections 4.1 and 4.2 con-
firm the learning power of complex-valued neurons, by verifying that a complex-valued neuron can
efficiently learn functions expressed by any one real-valued neuron and any one complex-valued
neuron, respectively. Subsection 4.3 points out the limited learning capability of real-valued neu-
rons, by proving that a two-layer RVNN with finite width cannot learn a single non-degenerate
complex-valued neuron.

4.1 Learning One Real-valued Neuron with a Complex-valued Neuron

We first investigate the case of learning one real-valued neuron with ReLU activation using a
complex-valued neuron with zReLU activation, where the expected square loss in Eq. (1) becomes

Lcr(w, ψ) =
1

2
Ex∼N (0,I)

[(
σψ(w

⊤
CxC)− τ(v⊤x)

)2]
, (2)

where we abbreviate the phase parameter ψw as ψ since the target real-valued neuron does not have a
phase parameter, w ∈ R2d and v ∈ R2d represent the weight vectors of the complex-valued neuron
and the real-valued neuron, respectively. We assume ∥v∥ = 1 without loss of generality. Then we
present the first theorem for complex-valued neuron learning.

Theorem 1. Let d = 1. Suppose that w0 ∼ N (0, I2) and ψ0 ∼ U(0, π/2). Let {(wt, ψt)}∞t=0 de-
note the parameter sequence of the complex-valued neuron generated by projected gradient descent
when optimizing Lcr, the expected loss of learning a real-valued neuron using a complex-valued
neuron. If the step size ηt = η ∈ (0, 1/(12π)), then we have

Pr

[
Lcr(wt, ψt) ⩽

8000

η3t3
+
(
1− η

48

)t+1−32/η
]
⩾ 1

32
.

Theorem 1 shows that a complex-valued neuron can efficiently learn the functions expressed by any
one real-valued neuron with convergence rate O(t−3) using projected gradient descent. It should be
mentioned that we do not attempt to decrease the large constants in the theorem, as they do not hurt
the constant probability and convergence rate.

The constant probability, rather than high probability, comes from the intrinsical difference between
real-valued neurons and complex-valued neurons. A real-valued neuron activates half of the phase
domain, whereas a complex-valued neuron may only activate a small part as controlled by the pa-
rameter ψ, which makes the expected loss a piecewise function. When the initialization of w falls
into the opposite direction of v and ψ is small, the activated regions of the real-valued and complex-
valued neurons are not overlapped. Such a bad initialization happens with a constant probability
and encourages the complex-valued neuron to decrease phase to minimize the loss. As a result, the
phase of the complex-valued neuron will shrink to zero, which leads to a constant expected square
loss and the failure of learning.

Challenges. Although (w, ψ) = (v, π/2) is an obvious global minimum of the expected loss with
Lcr = 0, the convergence conclusion in Theorem 1 is non-trivial. As one can see in the proof, the
landscape of the expected loss possesses a stationary point (w, ψ) = 0. If we initialize w = −kv
with k > 0, then it is easy to verify that w converges to 0 and ψ decreases to 0 when the step size is
sufficiently small. This implies that the landscape is not convex and the spurious stationary point is
an attractor. The existence of this spurious stationary point becomes a critical obstacle in the proof
and provides another reason for the hardness of a high-probability conclusion.

The proof idea of Theorem 1 mainly consists of estimating the first-order derivatives and finding
an ideal region with both constant probability and convergence guarantees. We provide a proof
sketch as follows. Firstly, we analyze the optimization behaviors of w and ψ in all pieces of the
loss function separately. Then we identify an ideal region with desirable gradient properties: the
gradient ∇ψLcr(w, ψ) can be bounded by O((ψ − π/2)2), which implies that ψ − π/2 decreases
with an inversely propositional rate. Meanwhile, gradient descent on w performs like a contraction
mapping with fixed point v and Lipschitz constant 1 − Θ(ψ), i.e., w converges to v linearly when
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(a) Convergence stages of Theorem 1. (b) Convergence stages of Theorem 2.

Figure 1: Subfigures (a) and (b) demonstrate the convergence stages of Theorems 1 and 2, respec-
tively. The horizontal axis represents the iteration index of gradient descent. The black dotted line
denotes the separation of convergence stages.

ψ is large enough. Based on these observations, our convergence analysis consists of two stages, as
shown in Fig. 1(a). In Stage I, the phase ψ converges towards the global minimum, and the weight
w remains in the ideal region. When the phase grows above some threshold, one enters Stage II
where the weight converges linearly and the phase maintains its slow convergence rate. Finally, we
estimate the order of loss and provide a lower bound of the probability of falling into the ideal region
with Gaussian initialization to complete the proof. Detailed proofs are available in Appendix B.

4.2 Learning One Complex-valued Neuron with a Complex-valued Neuron

We proceed to consider learning one complex-valued neuron using a complex-valued neuron. In this
case, the expected square loss in Eq. (1) can be rewritten as

Lcc(w, ψ) =
1

2
Ex∼N (0,I)

[(
σψ(w

⊤
CxC)− σψv (v

⊤
C xC)

)2]
,

where (v, ψv) denotes the parameter of the target complex-valued neuron, and (w, ψ) is the learn-
able parameter. Without loss of generality, we still assume ∥v∥ = 1. Here, we use gradient descent
with vanishing step size xt+1 = xt − ηt∇f(xt), where the positive step size ηt satisfies ηt → 0 as
t→ ∞. Then we present the second theorem for complex-valued neuron learning.
Theorem 2. Let d = 1, and ψv ∈ [7π/20, 2π/5]. Suppose that w0 ∼ N (0, I2) and ψw,0 ∼
U(0, π/2). Let {(wt, ψw,t)}∞t=0 denote the parameter sequence of the complex-valued neuron gen-
erated by projected gradient descent when optimizing Lcc, the expected loss of learning a complex-
valued neuron using a complex-valued neuron. If we utilize vanishing step size ηt = min{c1, c2/t}
with c1 ⩽ 1/3000 and c2 ⩾ 20, then

Pr

[
Lcc(wt, ψw,t) ⩽

400c32
c1t

]
⩾ 10−5 .

Theorem 2 demonstrates that a complex-valued neuron can efficiently learn functions expressed by
any one complex-valued neuron with convergence rate O(t−1) and constant probability.

Challenges. It is observed that the O(t−1) convergence rate in Theorem 2 is slower than the O(t−3)
convergence rate in Theorem 1. The deceleration of convergence comes from the intrinsic difficulties
of learning functions expressed by any one complex-valued neuron. These difficulties become the
main challenges in the analysis and can be understood from at least two perspectives. Firstly, there
emerge new spurious stationary points. As one can see in the proof, the gradient with respect to
ψw becomes 0 once ψw reaches π/2 and w is close to v, i.e., (w, ψw) = (v, π/2) is a spurious
stationary point. Secondly, the landscape of the loss function is no longer smooth. For both w and
ψw, the local landscape around the global minimum is roughly an absolute function, which declares
the non-smoothness of the loss and the failure of gradient descent with a constant step size.

To overcome these obstacles, we apply mild conditions and slight modifications to guarantee conver-
gence and maintain the generality of our conclusion. We separate the phase of the target complex-
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valued neuron far from 0 and π/2 in consideration of spurious local stationary points: As ψv be-
comes closer to 0, it is more likely to obtain an initialization of the learning neuron that does not
overlap with the target neuron. Then we will take the risk of falling into the spurious local minimum
(w, ψw) = (0, 0). As ψv approaches π/2, we are confronted by another spurious stationary point
ψw = π/2. We utilize gradient descent with a vanishing step size to cope with the non-smoothness
of the loss function since a constant step size inevitably suffers from oscillation.

We summarize the proof idea of Theorem 2 as follows. The overall procedure is similar to that
of Theorem 1 but every step is different and more challenging because of non-smoothness and
more spurious stationary points. Firstly, we identify an ideal region with nice gradient properties:
the gradient with respect to w⊥, the weight component perpendicular to v, points to the global
minimum 0 and maintains constant order. The gradient ∇ψw is bounded and points towards ψv
when the angle θw,v is small enough. Meanwhile, the gradient with respect to wv performs like a
contraction mapping with fixed point [1−Θ(ψvψ

−1
w )]v and Lipschitz constant 1−Θ(ψ), i.e., there

exists a deviation of the fixed point from the global minimum. Based on these observations, we then
prove the convergence with three stages, as demonstrated in Fig 1(b): In Stage I, w⊥, the weight
component perpendicular to v, converges to 0 with an inversely proportional rate, and ψw and wv

remain in the ideal region. Thus, the angle θw,v decreases with an inversely proportional rate. When
θw,v declines below some threshold, we come to Stage II where phase ψw converges to ψv with rate
O(t−1). As ψw approaches ψv , the fixed point becomes close to v and we step into Stage III where
w converges to v with the same rate as ψw. Finally, we estimate the order of loss and provide a lower
bound of the probability of falling into the ideal region with Gaussian initialization to complete the
proof. We provide detailed proofs in Appendix C.

4.3 Finite-Width RVNNs Cannot Learn a Single Non-degenerate Complex-valued Neuron

We then study learning one complex-valued neuron with zReLU activation using real-valued neu-
rons. Since a complex-valued neuron has more parameters than a real-valued neuron, it is unfair
to learn a complex-valued neuron with a single real-valued neuron. Thus, we consider the problem
of learning a complex-valued neuron with a two-layer RVNN. A two-layer RVNN with n hidden
neurons can be represented by x → α⊤τ(Wx), where W ∈ Rn×2d and α ∈ Rn indicate weight
parameters of the network, and τ is the ReLU activation function applied componentwisely. We still
focus on the expected square loss, which takes the form

Lrc(α,W) =
1

2
Ex∼N (0,I)

[(
α⊤τ(Wx)− σψ(v

⊤
C xC)

)2]
,

where we abbreviate the phase parameter ψv as ψ since RVNN has no phase parameter. We are
mainly interested in learning a non-degenerate complex-valued neuron, which is distinct from a
real-valued neuron and defined as follows.
Definition 3. A complex-valued neuron is a non-degenerate one if ψ /∈ {0, π/2} and v ̸= 0.

For a complex-valued neuron with phase ψ = 0 or v = 0, the zReLU activation function always
outputs 0. Then the complex-valued neuron is equivalent to a real-valued neuron with all zero
weights. For a complex-valued with phase ψ = π/2, the zReLU activation function is equivalent to
the ReLU activation function. Thus, a non-degenerate complex-valued neuron is a non-real-valued
neuron. Then we present the third theorem for complex-valued neuron learning.
Theorem 4. Let d = 1. For any non-degenerate complex-valued neuron with phase ψ ∈ (0, π/2)
and non-zero weight vector v ∈ Cd, denote by Lrc the expected square loss of learning this complex-
valued neuron using a one-hidden-layer RVNN with n hidden neurons. Then the loss satisfies

Lrc(α,W) ⩾ ∥v∥2 min{2ψ, π − 2ψ}3

24π(n+ 2)2
> 0 .

Theorem 4 provides a positive lower bound for the expected squared loss of approximating a non-
degenerate complex-valued neuron using a two-layer RVNN with a fixed number of hidden neurons.
This positive lower bound indicates that there always remains a positive gap between the target non-
degenerate complex-valued neuron and the two-layer RVNN of fixed width no matter how the pa-
rameters of the RVNN are learned. Thus, a finite-width RVNN cannot learn a single non-degenerate
complex-valued neuron.
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(a) The loss in one sector. (b) The loss in four sectors.

Figure 2: An illustration of the proof idea of Theorem 4. Shaded areas represent sectors with infinite
radii. (a) The expectation Ex∈S [(w

⊤x)2] in the sector S equals the sum of the expectations on three
subareas A1, A2, and A3. The minimum expectation on a subarea can be bounded by Ω(θ2∥w∥2).
(b) The expected loss of learning a complex-valued neuron using four symmetric real-valued neurons
in four symmetric sectors can be bounded by Ω(θ2∥v∥2), where wi indicates the weight vector of
the i-th real-valued neuron, and v denotes that of a complex-valued neuron.

The lower bound decreases at rate Θ(∥v∥2 min{2ψ, π− 2ψ}3n−2). The norm term ∥v∥ depicts the
magnitude of the problem, which affects the expected square loss quadratically from the homogene-
ity of zReLU. In the extreme case of v = 0, a trivial real-valued neuron with w = 0 reaches the
lower bound 0. Meanwhile, the lower bound possesses a positive relation with a phase-dependent
term {2ψ, π− 2ψ}. Intuitively, this term indicates the difference between a complex-valued neuron
and a real-valued neuron. A real-valued neuron corresponds to ψ = 0 or ψ = π/2 and this term
measures the distance between the phase of a complex-valued neuron and a real-valued one. Finally,
the lower bound decreases with a rate inversely proportional to the square of hidden size n. We
conjecture that this dependence is tight and cannot be improved: a two-layer RVNN with n neurons
divides the space into n pieces, in each of which RVNN acts as a linear function. Choosing the n
weight vectors of RVNN suitably, the difference between the RVNN and the complex-valued neuron
remains small (of order n−1) in each piece, which leads to the expected loss of order O(n−2).

The conditions in Theorem 4 are made for conciseness of proof and we believe the conclusion
holds in more general cases. The dimension d = 1 corresponds to the intrinsic dimension of ex-
pressing a complex-valued neuron because of the rotational invariance of the inner product and
the spherical symmetry of Gaussian distributions. Thus, additional dimensions contain no informa-
tion and cannot improve the efficiency of approximation when d > 1. It is necessary to consider
non-degenerate complex-valued neurons since degenerate complex-valued neurons are equivalent to
real-valued ones.

We provide the central proof idea of Theorem 4 as follows. It is observed that the expected square
loss Lrc is a piecewise quadratic function and each piece forms a sector centered at the origin with
infinite radius. In each piece, Lrc takes the form E[(w⊤x)2]. The proof mainly consists of two
steps: we obtain a lower bound of Lrc in a sector and then sum over all sectors with suitable weights
and order. Firstly, we consider the expected loss in a sector with a small central angle θ, as shown in
Fig. 2(a). We divide the sector into three identical subareas A1, A2, and A3. Then at least one of A1

andA3 remains θ/6 away from the vertical direction of w, which leads to a lower bound Ω(θ2∥w∥2).
Secondly, we consider the loss in four rotationally symmetric sectors, as shown in Fig. 2(b), where v
represents a complex-valued neuron, wi indicates a real-valued neuron, and the expression in each
sector implies the activated neurons. It is observed that at least one sector possesses a weight vector
with norm Ω(∥v∥), no matter how we choose the real-valued neurons. Thus, the overall loss is
bounded by Ω(θ2∥v∥2). Finally, we take the weight α into consideration and sum over all sectors.
For RVNN with n neurons, the best choice of θ = Θ(n−1) arrives at the lower bound Ω(n−2∥v∥2).
Detailed proofs are provided in Appendix D.
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Summary and simulation experiments. We summarize the main conclusions of this section in
Table 2. Both a real-valued neuron and a complex-valued neuron succeed in learning functions ex-
pressed by any one real-valued neuron. But difference occurs when learning those expressed by
any non-degenerate complex-valued neuron: A complex-valued neuron can efficiently learn func-
tions expressed by any one complex-valued neuron, but a two-layer RVNN with finite width cannot
learn a single non-degenerate complex-valued neuron. Such a disagreement demonstrates that a
complex-valued neuron possesses more powerful learning capability, which profits from the consid-
eration of phase information in complex-valued operations. Our theoretical conclusions are based
on the setting of low-dimensional inputs and no bias term, and the simulation results in Fig. 3 verify
and extend these discoveries in more general settings. Details about the simulation experiments are
available in Appendix F.

Table 2: A complex-valued neuron can learn more than a real-valued neuron.
Target Real-valued Neuron Complex-valued Neuron

Real-valued Neuron O(e−ct) [19] O(t−3) (Theorem 1)
Complex-valued Neuron Cannot Learn (Theorem 4) O(t−1) (Theorem 2)

(a) d = 1 and no bias term. (b) d = 5 and with bias terms.

Figure 3: The test error of learning a complex-valued neuron. In both the theoretical setting (Fig. 3a)
and more general settings (Fig. 3b), complex-valued neurons have vanishing errors, while real-
valued neurons converge to positive errors.

5 Complex-valued Neurons Learn Slower

In this section, we demonstrate that complex-valued neurons learn slower than real-valued neurons.
To arrive at this conclusion, we first rephrase the linear convergence of learning functions expressed
by any one real-valued neuron using real-valued neurons. Then we prove that a complex-valued
neuron learns the same class of functions at an exponentially slower rate.

We concentrate on learning one real-valued neuron x → τ(v⊤x) with ∥v∥ = 1. When learning
one real-valued neuron using a real-valued neuron, the expected square loss in Eq. (1) possesses the
following simple closed form [41]

Lrr(w) =
1

4
∥w∥2 − 1

2π
∥w∥[sin θw,v + (π − θw,v) cos θw,v] +

1

4
.

It is widely known that a real-valued neuron learns a real-valued neuron with high probability and
linear convergence rate [19], as reformulated by the following lemma.
Lemma 5. [19, Theorem 6.4] Suppose that the weight vector w ∈ R2d is initialized by a Gaussian
distribution N (0, I/(2d)). Let Lrr denote the expected square loss of learning a real-valued neuron
using a real-valued neuron. Then there exist constants c1, c2 such that gradient descent with suitable
step size satisfies

Pr[Lrr(wt) ⩽ e−c1t] ⩾ 1− e−c2d .
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Figure 4: A demonstration of the convergence stages of Theorem 6. The horizontal axis represents
the iteration index of gradient descent. The black dotted line is the separation of convergence stages.

Recalling the expected loss of learning one real-valued neuron with a complex-valued neuron in
Eq. (2), then we present the fourth theorem for complex-valued neuron learning, which provides a
lower bound for the convergence rate.

Theorem 6. Let d = 1. Suppose that ∥w0 − v∥ < 1. Let {(wt, ψt)}∞t=0 denote the parameter
sequence of the complex-valued neuron generated by projected gradient descent when optimizing
Lcr, the expected loss of learning a real-valued neuron using a complex-valued neuron. If the step
size ηt = η ∈ (0, 1/(12π)), then we have

Lcr(wt, ψt) ⩾
(1− 12η)3T3/2(ψ∗ − ψ0)

3

8π(t− T3 + 1)3
− 1

2π

(
1− η

48

)t−T3

,

where ψ∗ = π/2, and T3 is a constant dependent on ∥w0 − v∥, η, and ψ∗ − ψ0.

Theorem 6 presents a lower bound for the expected loss of learning one real-valued neuron with a
complex-valued neuron. It is observed that the negative term in the lower bound becomes 0 expo-
nentially fast as t increases, and the positive term decreases with order Ω(t−3). Thus, the expected
loss possesses a lower bound Ω(t−3) since the positive term dominates the loss when t grows suffi-
ciently large. This lower bound matches the upper bound in Theorem 1. Thus, O(t−3) becomes the
utmost limit of learning with a complex-valued neuron via gradient descent, i.e., we cannot expect a
complex-valued neuron to learn faster than this utmost limit.

The conditions in Theorem 6 are technical and reasonable. The condition on w0 is made for the
conciseness of proof and can be removed. It is observed that (w, ψ) = (v, ψ∗) is the unique global
minimum withLcr = 0. Meanwhile, it is easy to verify that the loss goes to infinity when ∥w∥ → ∞.
Thus, if we aim to obtain a small loss, the parameter sequence must fall into a small neighborhood
of the global minimum, which is depicted by condition ∥w0−v∥ ⩽ R < 1. The condition ψ0 ̸= ψ∗

holds with probability 1 when we initialize ψ0 with a continuous distribution. This condition is
necessary to obtain a meaningful lower bound since the numerator of the positive term equals 0
when ψ0 = ψ∗. We emphasize that this condition is essential and cannot be removed because a
complex-valued neuron with ψ0 = ψ∗ is equivalent to a real-valued neuron, which enjoys linear
convergence as stated in Lemma 5. The condition d = 1 corresponds to the simplest optimization
problem of learning one real-valued neuron with a complex-valued neuron since high-dimensional
optimization brings more difficulties. Thus, we cannot expect a complex-valued neuron to learn a
real-valued neuron with a convergence rate faster than O(t−3) in a higher dimension.

We summarize the proof idea of Theorem 6 as follows. The gradient with respect to ψ possesses the
order (ψ∗ − ψ)2 + (ψ∗ − ψ)θw,v . The key intuition is that ψ converges fast to the global minimum
when θw,v remains large, but θw,v diminishes as w converges to the global minimum v. The detailed
proofs are complicated and consist of several stages, depicting the entangled convergence between
w and ψ as shown in Figure 4. In Stage I, ψ increases above a positive constant, which is a necessary
condition for fast convergence of w in Stage II. When the distance between w and v declines below
a threshold, the angle θw,v becomes small. Then we enter Stage III, where w converges faster than
ψ. Stage IV begins when ψ∗−ψ dominates θw,v . Then the gradient degenerates to order (ψ∗−ψ)2,
which implies a lower bound of convergence ψ∗ − ψ = Ω(t−1). Finally, estimating the loss around
the global minimum leads to the conclusion. Detailed proofs are provided in Appendix E.
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Summary and simulation experiments. Table 3 summarizes the conclusions in this section, which
shows that a complex-valued neuron learns slower than a real-valued one. A complex-valued neuron
is more flexible since it can learn the phase. But this flexibility becomes redundant and slows
down the convergence when learning a phase-independent function. Our theories are based on the
setting of low-dimensional inputs and no bias term, and the simulation results in Fig. 3 verify and
extend these discoveries in more general settings. Details about the experiments are available in
Appendix F.

Table 3: A real-valued neuron learns faster than a complex-valued neuron.
Target Real-valued Neuron Complex-valued Neuron

Real-valued Neuron O(e−ct) (Lemma 5) Ω(t−3) (Theorem 6)

(a) d = 1 and no bias term. (b) d = 5 and with bias terms.

Figure 5: The test error of learning a real-valued neuron. In both the theoretical setting (Fig. 5a) and
more general settings (Fig. 5b), a complex-valued neuron learns a real-valued neuron slower.

6 Conclusions and Prospects

In this paper, we investigate the problem of learning a single neuron using another neuron by opti-
mizing the expected square loss via gradient descent. Firstly, we prove that a complex-valued neuron
can efficiently learn functions expressed by any one real-valued neuron and any one complex-valued
neuron with convergence rate O(t−3) and O(t−1), respectively, where t denotes the iteration index
of gradient descent. Meanwhile, two-layer RVNNs with finite width cannot learn a single non-
degenerate complex-valued neuron in a strong sense that there always exists a positive gap between
a two-layer RVNN of fixed width and a non-degenerate complex-valued neuron. These conclu-
sions suggest that complex-valued neurons can learn more than real-valued neurons since CVNNs
benefit from the phase parameter, which helps CVNNs learn phase information more efficiently.
Secondly, we provide a convergence lower bound Ω(t−3), which matches the upper bound, for
learning one real-valued neuron with a complex-valued neuron. This conclusion, together with the
well-known linear convergence of learning one real-valued neuron with a real-valued neuron, im-
plies that complex-valued neurons learn slower than real-valued neurons in phase-independent tasks.
This phenomenon captures the additional price for learning simpler tasks with more complicated
models, where the redundant phase consideration exponentially slows down the convergence.

Our study serves as a preliminary attempt to compare the learning process of artificial neural net-
works with different functional operations. In the future, it is important to extend our theoretical
results to more general settings, such as cases of high-dimensional inputs, equipped with bias terms,
and over-parameterized architectures [42]. Meanwhile, it is prospective to investigate complex-
valued neuron learning from finite samples and derive a high-probability convergence condition.
Since the empirical loss is a piecewise constant function with respect to the learnable phase parame-
ter, it might be necessary to explore new learning algorithms, which is also encouraged by the neural
tangent kernel aspect [43]. Besides, it is promising to consider the more practical and challenging
procedure of learning general functions with deep architectures.
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Appendix of “Complex-valued Neurons Can Learn More but
Slower than Real-valued Neurons via Gradient Descent”

A Preliminaries

In this section, we first summarize frequently used notations in the following table.

Table 4: Frequently used notations.

Notation Description

Cd the d-dimensional complex space
E expectation
I(·) the indicator function
L the expected square loss of learning a neuron
N (0, I) the standard Gaussian distribution
O,Ω,Θ asymptotic notations
Pr probability
PQ(x) the projection of x on Q
R2d the 2d-dimensional real space
Re(z) the real part of a complex number z
t the iteration index of gradient descent
U(a, b) the uniform distribution on the interval [a, b]
v the weight vector of a learning neuron
w the weight vector of a target neuron
x an input vector in R2d

xi the i-th coordinate of x
xC xC = (x1; . . . ;xd) + (xd+1; . . . ;x2d)i ∈ Cd
xC the complex conjugate of xC
θa,b the angle between a and b
θz the argument of a complex number z
σψ(z) the real part of the symmetrical version of zReLU activation function
η the step size of gradient descent
τ the ReLU activation function τ(x) = max{0, x}
ψ the learnable parameter of the symmetrical version of zReLU activation function
∇ gradient
∥ · ∥ the 2-norm of a vector

We then give some basic lemmas that help us calculate the closed form of the expected loss.
Lemma 7. Let d = 1. For any w,v ∈ R2d, and a ⩽ b ⩽ a+ 2π, we have

A(w,v, a, b) = Ex∼N (0,I)

[
w⊤x · v⊤x · I(θx ∈ [a, b])

]
=

∥w∥∥v∥
4π

[2(b− a) cos θw,v + sin(θw + θv − 2a)− sin(θw + θv − 2b)] .

Proof. According to the probability density function of Gaussian distribution, we can calculate A in
the polar coordinate system as

A(w,v, a, b) =
∥w∥∥v∥

2π

∫ ∞

0

∫ b

a

r3e−
1
2 r

2

cos(θw − ϕ) cos(θv − ϕ) dϕ dr

=
∥w∥∥v∥

π

∫ b

a

cos(θw − ϕ) cos(θv − ϕ) dϕ

=
∥w∥∥v∥

4π
[2(b− a) cos θw,v + sin(θw + θv − 2a)− sin(θw + θv − 2b)] ,

where the second and third equalities hold from integrating over r and ϕ, respectively. Thus, we
have completed the proof.
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Lemma 8. Let d = 1. For any w,v ∈ R2d, denote by θ = θw,v the angle between w and v. Then
for any ψw, ψv ∈ [0, π/2], define ψm = min{ψw, ψv}. Then we have

B(w,v, ψw, ψv) = Ex∼N (0,I)

[
σψw(w

⊤
CxC)σψv (v

⊤
C xC)

]
=


∥w∥∥v∥

2π cos θw,v[2ψm + sin(2ψm)] , θw,v ∈ [0, |ψv − ψw|] ,
∥w∥∥v∥

4π [2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)
− sin(θw,v − 2ψw)] , θw,v ∈ [|ψv − ψw|, ψv + ψw] ,

0 , θw,v ∈ [ψv + ψw, π] .

Proof. We only consider the case of ψw ⩽ ψv . The other case ψw ⩾ ψv can be proven similarly.
We prove the conclusion by discussion.

1. Suppose θw,v ∈ [0, ψv − ψw]. Then Lemma 7 leads to

B(w,v, ψw, ψv) = A(w,v, θw − ψw, θw + ψw) =
∥w∥∥v∥

2π
cos θw,v[2ψw + sin(2ψw)] .

2. Suppose θw,v ∈ [ψv − ψw, ψv + ψw] and θw ⩽ θv . Then one knows from Lemma 7 that
B(w,v, ψw, ψv) = A(w,v, θv − ψv, θw + ψw)

=
∥w∥∥v∥

4π
[2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)− sin(θw,v − 2ψw)] .

3. Suppose θw,v ∈ [ψv − ψw, ψv + ψw] and θw ⩾ θv . Based on Lemma 7, we have
B(w,v, ψw, ψv) = A(w,v, θw − ψw, θv + ψv)

=
∥w∥∥v∥

4π
[2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)− sin(θw,v − 2ψw)] .

4. Suppose θw,v ∈ [ψv + ψw, π]. Then the support of σψw(w
⊤
CxC) does not overlap with that of

σψv (v
⊤
C xC), which leads to B(w,v, ψw, ψv) = 0.

Combining the cases above completes the proof.

B Proof of Theorem 1

In the main part of this section, we provide the closed form of the loss, definition of the ideal region,
and the detailed proof of Theorem 1. Subsection B.1 presents the optimization behaviors in the
ideal region. Subsection B.2 proves several convergence rate lemmas. Subsection B.3 gives some
technical lemmas to bound small terms in the proof.

Let w = (w1, w2). According to the spherical symmetry, we assume v = (1, 0) without loss of
generality. According to Lemma 8, the expected loss can be calculated by

Lcr(w, ψ) =
1

2
B(w,w, ψ, ψ)−B(w,v, ψ, π/2) +

1

2
B(v,v, π/2, π/2)

=


1
4 − 1

4π [sin(2ψ) + 2ψ][1− (w1 − 1)2 − w2
2] , θ ∈ [0, π/2− ψ] ,

1
4 − 1

2π [
1
2 sin(2ψ)w1 − 1

2 cos(2ψ)|w2|+ 1
2 |w2|+ (π2 + ψ − θ)w1]

+ 1
4π [sin(2ψ) + 2ψ](w2

1 + w2
2) , θ ∈ (π/2− ψ, π/2 + ψ) ,

1
4 + 1

4π [2ψ + sin(2ψ)](w2
1 + w2

2) , θ ∈ [π/2 + ψ, π] ,
(3)

where θ = θw,v = arccos(w1/
√
w2

1 + w2
2). For any R ∈ (0, 1), define

D1 = {(w, ψ) | ∥w − v∥ ⩽ R,ψ ∈ [0, π/2], θ ∈ [0, π/2− ψ]} ,
D2 = {(w, ψ) | ∥w − v∥ ⩽ R,ψ ∈ [0, π/2], θ ∈ (π/2− ψ, π/2 + ψ)} .

Let D = D1 ∪D2 denote the ideal region, i.e.,
D = {(w, ψ) | ∥w − v∥ ⩽ R,ψ ∈ [0, π/2], θ ∈ [0, π/2 + ψ]} .

We are now ready to prove Theorem 1.

Proof of Theorem 1. The proof is divided into four steps.

Step 1: D is closed under gradient descent. Before considering the convergence, we prove the
maintenance of inclusion by mathematical induction, i.e., (w0, ψ0) ∈ D indicates (wt, ψt) ∈ D.
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1. Base case. The conclusion holds for t = 0 from the condition.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then based on Lemmas 11

and 12, one knows

−6(ψ∗ − ψk) ⩽ ∇ψLcr(wk, ψk) ⩽ −1−R2

4π
(ψ∗ − ψk)

2 ⩽ 0 , (4)

where ψ∗ = π/2, the first inequality holds based on the induction hypothesis and |w2,k| ⩽ 1, and
the third inequality holds from R < 1. Thus, the updating rule ψk+1 = ψk − η∇ψLcr(wk, ψk)
with η ∈ (0, 1/(12π)) leads to

π

2
⩾ ψ∗ − ψk ⩾ ψ∗ − ψk+1 ⩾ (1− 6η)(ψ∗ − ψk) ⩾ 0 , (5)

where the first and fourth inequalities hold from the induction hypothesis. Meanwhile, Lemmas 9
and 10 imply

∥wk+1 − v∥ ⩽
(
1− η

24π
[sin(2ψk) + 2ψk]

)
∥wk − v∥ ⩽ R . (6)

Combining Eqs. (5) and (6), the conclusion holds for t = k + 1.

Therefore, mathematical induction implies (wt, ψt) ∈ D when (w0, ψ0) ∈ D.

Step 2: parameters converge to the global minimum in D. The convergence process consists of
two stages. In stage I, we deal with the convergence of ψ when (w0, ψ0) ∈ D. Based on Eq. (4) and
the updating rule ψk+1 = ψk − η∇ψLcr(wk, ψk), one knows

ψ∗ − ψt+1 ⩽ (ψ∗ − ψt)

[
1− η(1−R2)

4π
(ψ∗ − ψt)

]
.

Define at = η(1−R2)(ψ∗−ψt)/(4π). Then we obtain at+1 ⩽ at(1−at). From ψ∗−ψt ∈ [0, π/2]
and η < 1/(12π) ⩽ 4, one knows at ∈ [0, 1/2]. Thus, applying Lemma 14 to at leads to

ψ∗ − ψt =
4πat

η(1−R2)
⩽ 4π

η(1−R2)(t+ 1)
. (7)

In stage II, we consider the convergence of w when (w0, ψ0) ∈ D. Based on Eq. (7), choosing
T1 ⩾ 16⌈η(1 − R2)⌉−1 leads to ψ∗ − ψt ⩽ π/4 for any t ⩾ T1, i.e., ψt ⩾ π/4 for any t ⩾ T1.
Thus, for any t ⩾ T1, Eq. (6) indicates

∥wt − v∥ ⩽
(
1− η

48

)
∥wt−1 − v∥ ⩽

(
1− η

48

)t−T1

, (8)

where the first inequality holds from the monotonic increasing of sin(x) + x and ψt ⩾ π/4, and the
second inequality holds because of ∥wT1 − v∥ ⩽ R < 1.

Step 3: the loss converges to 0 in D. We estimate the convergence of the expected loss when
(w0, ψ0) ∈ D. For any (w, ψ) ∈ D, define non-negative quantities ∆w = ∥w − v∥ and ∆ψ =
ψ∗ − ψ. We provide an upper bound for Lcr by discussion.

1. Suppose (w, ψ) ∈ D1. Then we have

Lcr(w, ψ) ⩽
1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) ⩽ 1

2π
∆3
ψ +

1

4
∆2

w , (9)

where the first inequality holds based on sin(2ψ)+2ψ = sin(2∆ψ)+2ψ∗−2∆ψ ⩾ 2ψ∗−2∆3
ψ ,

and the second inequality holds from non-negative ∆ψ .
2. Suppose (w, ψ) ∈ D2. The expected loss can be rewritten as

Lcr(w, ψ) =
1

4
− 1

4π
[sin(2ψ) + 2ψ](1−∆2

w)

+
1

4π
[(cos(2ψ)− 1)|w2|+ (sin(2ψ) + 2ψ + 2θ − 2ψ∗)w1]

⩽ 1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) +

1

4π
[(π + 2θ − 2ψ∗)w1]

⩽ 1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) +

1

2π
∆w(1 + ∆w)

⩽ 1

2π
∆3
ψ +

1

2π
∆w +

1

2
∆2

w ,

(10)
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where the first inequality holds from π ⩾ sin(2ψ)+2ψ ⩾ 2ψ∗−2∆3
ψ and cos(2ψ)−1 ⩽ 0, the

second inequality holds based on θ ⩽ tan θ ⩽ ∆w and w1 ⩽ 1 + ∆w, and the third inequality
holds from ∆ψ ⩾ 0.

Combining Eqs. (9) and (10), one knows that the following holds for any (w0, ψ0) ∈ D and t ⩾ T1

Lcr(wt, ψt) ⩽
1

2π
∆3
ψ,t +∆w,t ⩽

32π3

η3(1−R2)3t3
+
(
1− η

48

)t−T1

, (11)

where the first inequality holds from ∆2
w ⩽ ∆w, and the second inequality holds by Eqs. (7) and (8).

Step 4: initialization falls into D with constant probability. Let p0 = Pr[(w0, ψ0) ∈ D] for
simplicity. From ψ0 ∼ U(0, π/2), the requirement ψ ∈ [0, π/2] is satisfied. Denote by p(w) the
probability density function of N (0, I2). Then one has

p0 = Pr[∥w0 − v∥ ⩽ R] =

∫
w∈B(v,R)

p(w) dw ⩾ µ(B(v, R)) min
w∈B(v,R)

p(w) ⩾ R2

16
. (12)

Let R2 = 1/2. We obtain from Eqs. (11) and (12) that

Pr

[
Lcr(wt, ψt) ⩽

8000

η3t3
+
(
1− η

48

)t+1−32/η
]
⩾ 1

32
,

which completes the proof.

B.1 Optimization Behaviors

The following two lemmas indicate the linear convergence of w in D1 and D2, respectively.
Lemma 9. Let w′ = w − η∇wLcr(w, ψ). If (w, ψ) ∈ D1 and η ∈ (0, 4), then we have

∥w′ − v∥ ⩽
(
1− η

4π
[sin(2ψ) + 2ψ]

)
∥w − v∥ .

Proof. For any (w, ψ) ∈ D1, one has

⟨∇wLcr(w, ψ),w− v⟩ =
〈

1

4π
[sin(2ψ) + 2ψ](w − v),w − v

〉
=

1

4π
[sin(2ψ)+ 2ψ]∥w− v∥2 .

Meanwhile,

∥∇wLcr(w, ψ)∥2 =
1

(4π)2
[sin(2ψ) + 2ψ]2∥(w − v)∥2 .

Then according to Lemma 13 and ψ ∈ [0, π/2], for any η ∈ (0, 4), one has

∥w′ − v∥ ⩽
(
1− η

4π
[sin(2ψ) + 2ψ]

)
∥w − v∥ ,

which completes the proof.
Lemma 10. Let w′ = w − η∇wLcr(w, ψ). If (w, ψ) ∈ D2 and η ∈ (0, 1/(12π)), then we have

∥w′ − v∥ ⩽
(
1− η

24π
[sin(2ψ) + 2ψ]

)
∥w − v∥ .

Proof. Firstly, we prove the strong convexity in D2. For any (w, ψ) ∈ D2, one has

2π⟨∇wLcr(w, ψ),w − v⟩

= −
[
1

2
sin(2ψ) +

(π
2
+ ψ − θ

)
+

w1|w2|
w2

1 + w2
2

]
(w1 − 1) + [sin(2ψ) + 2ψ]w1(w1 − 1)

−
[
−1

2
cos(2ψ) +

1

2
− w2

1

w2
1 + w2

2

]
|w2|+ [sin(2ψ) + 2ψ]w2

2

= [sin(2ψ) + 2ψ]∥w − v∥2 −R1 −R2 ,

(13)

where

R1 =

[(π
2
− ψ − θ

)
− 1

2
sin(2ψ)

]
(w1 − 1) and R2 =

[
1

2
− 1

2
cos(2ψ)− w1

w2
1 + w2

2

]
|w2| .

17



According to Lemmas 15 and 16, Eq. (13) can be bounded by

⟨∇wLcr(w, ψ),w−v⟩ ⩾ 1

2π

(
1

2
− 1

π

)
[sin(2ψ)+2ψ]∥w−v∥2 ⩾ 1

12π
[sin(2ψ)+2ψ]∥w−v∥2 .

(14)
Secondly, we provide an upper bound of gradient in D2. For any (w, ψ) ∈ D2, the gradient satisfies

4π2∥∇wLcr(w, ψ)∥2 = T1 + T2 ,

where

T1 =

(
[sin(2ψ) + 2ψ]w1 −

1

2
sin(2ψ)−

(π
2
+ ψ − θ

)
− w1|w2|
w2

1 + w2
2

)2

,

T2 =

([
1

2
cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2) + [sin(2ψ) + 2ψ]w2

)2

.

From Lemmas 17 and 18, one knows

∥∇wLcr(w, ψ)∥2 ⩽ [sin(2ψ) + 2ψ]∥w − v∥2 . (15)

Finally, based on Eqs. (14) and (15) and Lemma 13, we conclude

∥w′ − v∥ ⩽
√
1−

(
1

6π
− η

)
η[sin(2ψ) + 2ψ]∥w − v∥ ⩽

(
1− η

24π
[sin(2ψ) + 2ψ]

)
∥w − v∥ ,

where the first inequality holds based on
√
1− x ⩽ 1−x/2 for any x ∈ [0, 1] and η ∈ (0, 1/(12π)).

Thus, we have completed the proof.

The following two lemmas depict the gradient with respect to ψ in D1 and D2, respectively.
Lemma 11. Let ψ′ = ψ − η∇ψLcr(w, ψ). If (w, ψ) ∈ D1, then

− 1

π

(π
2
− ψ

)2
⩽ ∇ψLcr(w, ψ) ⩽ −1−R2

4π

(π
2
− ψ

)2
.

Proof. For any (w, ψ) ∈ D1, one has

∇ψLcr(w, ψ) = − 1

2π
[cos(2ψ) + 1](1− ∥w − v∥2) .

For any ψ ∈ [0, π/2], we have 1
2 (π/2 − ψ)2 ⩽ cos(2ψ) + 1 ⩽ 2(π/2 − ψ)2. Meanwhile, one has

0 ⩽ ∥wt − v∥ ⩽ R. Thus, the gradient with respect to ψ can be bounded by

− 1

π

(π
2
− ψ

)2
⩽ ∇ψLcr(w, ψ) ⩽ −1−R2

4π

(π
2
− ψ

)2
,

which completes the proof of the lower bound.
Lemma 12. If (w, ψ) ∈ D2, then

−2
(π
2
− ψ

)2
− 2

(π
2
− ψ

)
|w2| ⩽ ∇ψLcr(w, ψ) ⩽ −1−R2

2

(π
2
− ψ

)2
.

Proof. The gradient of Lcr with respect to ψ in D2 can be calculated by

2π∇ψLcr(w, ψ) = [1 + cos(2ψ)]w2
1 − [1 + cos(2ψ)]w1 + [1 + cos(2ψ)]w2

2 − sin(2ψ)|w2|
= [1 + cos(2ψ)][∥w − v∥2 − 1] + [1 + cos(2ψ)]w1 − sin(2ψ)|w2| .

(16)

Firstly, we prove the upper bound for ∇ψLcr(w, ψ). It is observed that

[1 + cos(2ψ)]w1 − sin(2ψ)|w2| ⩽ 2 cosψ(w1 sin θ − |w2| cos θ) = 0 ,

where the first inequality holds based on π/2 ⩾ ψ ⩾ π/2− θ ⩾ 0, and the first equality holds from
w1 = r cos θ and |w2| = r sin θ. Substituting Eq. (24) into Eq. (16), we obtain

2π∇ψLcr(w, ψ) ⩽ [1 + cos(2ψ)][∥w − v∥2 − 1] ⩽ −1−R2

2

(π
2
− ψ

)2
,

18



where the second inequality holds according to 1 + cos(2ψ) ⩾ 1
2 (π/2 − ψ)2 for any ψ ∈ [0, π/2]

and ∥w − v∥ ⩽ R.

Secondly, we verify the lower bound for ∇ψLcr(w, ψ). It is observed that
2π∇ψLcr(w, ψ) ⩾ −[1 + cos(2ψ)]− sin(2ψ)|w2|

⩾ −2
(π
2
− ψ

)2
− sin(2ψ)|w2|

⩾ −2
(π
2
− ψ

)2
− 2

(π
2
− ψ

)
|w2| ,

where the first inequality holds because of [1 + cos(2ψ)]w1 ⩾ 0 and ∥w − v∥ ⩾ 0, the second
inequality holds according to 1 + cos(2ψ) ⩽ 2(π/2− ψ)2, and the third inequality holds based on
sin(2ψ) ⩽ π − 2ψ for ψ ∈ [0, π/2]. Thus, we have completed the proof.

B.2 Convergence Rate Lemmas

The following lemma provides a sufficient condition for linear convergence of gradient descent.
Lemma 13. If there exist two constants c1 and c2 such that

⟨∇f(w),w − v⟩ ⩾ c1∥w − v∥2 and ∥∇f(w)∥2 ⩽ c2∥w − v∥2 ,
then w′ = w − η∇f(w) with η ∈ (0, 2c1/c2) and c =

√
1− 2c1η + c2η2 ∈ (0, 1) satisfies

∥w′ − v∥ ⩽ c∥w − v∥ .

Proof. It is observed that
∥w′ − v∥2 = ∥w − η∇f(w)− v∥2

= ∥w − v∥2 − 2η⟨∇f(w),w − v⟩+ η2∥∇f(w)∥2

⩽ (1− 2c1η + c2η
2)∥w − v∥2 .

For η ∈ (0, 2c1/c2), the coefficient 1−2c1η+c2η
2 is smaller than 1, which completes the proof.

The following lemma gives a sufficient condition for convergence with an inversely proportional
rate.
Lemma 14. Let {at}∞t=0 ⊂ [0, 1/2] represent a real-valued sequence.

1. If at+1 ⩽ at(1− at), then at ⩽ 1
t+1 .

2. If at+1 ⩾ at(1− at), then at ⩾ a0
t+1 .

Proof. We prove the first conclusion by mathematical induction.

1. Base case. For t = 0, the conclusion holds from a0 ⩽ 1/2 ⩽ 1.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then it is observed that

at+1 ⩽ 1

k + 1

(
1− 1

k + 1

)
=

k

(k + 1)2
⩽ 1

k + 2
,

where the first inequality holds from the induction hypothesis and the monotonicity of x(1− x)
for x ∈ [0, 1/2]. Thus, the conclusion holds for t = k + 1.

Therefore, mathematical induction completes the proof of the first conclusion.

We proceed to verify the second conclusion by mathematical induction.

1. Base case. For t = 0, the conclusion holds from a0 ⩾ a0.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then one has

at+1 ⩾ a0
k + 1

(
1− a0

k + 1

)
=
a0(k + 1− a0)

(k + 1)2
⩾ a0
k + 2

,

where the first inequality holds from the induction hypothesis and the monotonicity of x(1− x)
for x ∈ [0, 1/2], and the second inequality holds based on a0 ⩽ 1/2. Thus, the conclusion holds
for t = k + 1.

Therefore, mathematical induction completes the proof.
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B.3 Technical Lemmas

We present upper bounds for some small terms used in the proof.

Lemma 15. Let R1 =
[(
π
2 − ψ − θ

)
− 1

2 sin(2ψ)
]
(w1 − 1). If (w, ψ) ∈ D2, then

R1 ⩽ 1

2
[sin(2ψ) + 2ψ]∥w − v∥2 .

Proof. Let r =
√
w2

1 + w2
2 denote the norm of w. Then according to the definition of θ, one has

w1 = r cos θ and |w2| = r sin θ. Thus, we can rewrite R1 as

R1 =

[(π
2
− ψ − θ

)
− 1

2
sin(2ψ)

]
(r cos θ − 1) .

We provide the upper bound for R1 by discussion.

1. Suppose r cos θ − 1 ⩾ 0. Based on the definition of D2, we have π
2 − ψ − θ ⩽ 0. Meanwhile,

ψ ∈ [0, π/2] indicates sin(2ψ) ⩾ 0. Thus, one knows R1 ⩽ 0.
2. Suppose r cos θ − 1 < 0. R1 can be rewritten as

R1 =
1

2
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) + R̃ , (17)

where

R̃ =
1

2
[sin(2ψ) + 2ψ]r(cos θ − r) +

(π
2
− θ
)
(r cos θ − 1) .

If cos θ − r ⩽ 0, it is observed that R̃ ⩽ 0 because of ψ, θ ∈ [0, π/2] and r cos θ − 1 < 0. If
cos θ − r > 0, then

R̃ ⩽ π

2
r(cos θ − r) +

(π
2
− θ
)
(r cos θ − 1) = −π

2
r2 + (π − θ) cos θr −

(π
2
− θ
)
=: f(r) ,

where the inequality holds since sin(2ψ) + 2ψ is monotonically increasing. The discriminant of
f is

∆(θ) = (π − θ)2 cos2 θ − π(π − 2θ) ⩽ 1

π2
θ2(π − 2θ)(2θ − 3π) ,

where the first inequality holds since cos2 θ ⩽ 1−4θ2/π2 on [0, π/2]. According to θ ∈ [0, π/2],
one knows ∆(θ) ⩽ 0, which indicates f(r) ⩽ 0, and thus, R̃ ⩽ 0 when cos θ − r ⩽ 0.
Combining the cases above, we obtain R̃ ⩽ 0, which, together with Eq. (17), implies R1 ⩽
1
2 [sin(2ψ) + 2ψ](1− 2r cos θ + r2).

Combining the cases above, one knows

R1 ⩽ 1

2
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) =

1

2
[sin(2ψ) + 2ψ]∥w − v∥2 ,

which completes the proof.

Lemma 16. Let R2 =
[
1
2 − 1

2 cos(2ψ)−
w1

w2
1+w

2
2

]
|w2|. If (w, ψ) ∈ D2, then

R2 ⩽ 1

π
[sin(2ψ) + 2ψ]∥w − v∥2 .

Proof. Let r =
√
w2

1 + w2
2 denote the norm of w. Then according to the definition of θ, one has

w1 = r cos θ and |w2| = r sin θ. Thus, we can rewrite R2 as

R2 =
[r
2
(1− cos(2ψ))− cos θ

]
sin θ .

We provide the upper bound for R2 by discussion.

1. Suppose r
2 [1− cos(2ψ)]− cos θ ⩽ 0. From θ ∈ [0, π/2], we have R2 ⩽ 0.
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2. Suppose r
2 [1− cos(2ψ)]− cos θ > 0. It is observed that r < 2 cos θ since ∥w − v∥2 ⩽ r20 < 1

holds from the definition of D2. Thus, the supposition indicates cos θ < r
2 [1 − cos(2ψ)] <

[1− cos(2ψ)] cos θ, which, together with θ ∈ [0, π/2], implies ψ ⩾ π/4. It is observed that

f(r) =
1

2
(1− 2r cos θ + r2)− (r − cos θ) sin θ =

1

2
(r − cos θ − sin θ)2 ⩾ 0 ,

which indicates

1

π
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) ⩾ 1

2
(1− 2r cos θ + r2) ⩾ (r − cos θ) sin θ ⩾ R2 ,

where the first inequality holds from ψ ⩾ π/4, and the third inequality holds because of
cos(2ψ) ⩾ −1.

Combining the cases above, we obtain

R2 ⩽ 1

π
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) =

1

π
[sin(2ψ) + 2ψ]∥w − v∥2 ,

which completes the proof.

Lemma 17. Let T1 =
(
[sin(2ψ) + 2ψ]w1 − 1

2 sin(2ψ)−
(
π
2 + ψ − θ

)
− w1|w2|

w2
1+w

2
2

)2
. If (w, ψ) ∈

D2, then we have
T1 ⩽ 7π[sin(2ψ) + 2ψ]∥w − v∥2 .

Proof. It is observed that T1 =
[
[sin(2ψ) + 2ψ](w1 − 1) + T11 + T12

]2
with

T11 =
1

2
sin(2ψ) +

(
ψ + θ − π

2

)
and T12 = − w1|w2|

w2
1 + w2

2

. (18)

Firstly, denote by r0 ∈ (0, 1) a parameter determined later and we calculate an upper bound for T11
by discussion.

1. Suppose |w1 − 1|+ |w2| ⩾ r0. Then one has

|T11| ⩽
1

2
sin(2ψ) + ψ ⩽ 1

2r0
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] ,

where the first inequality holds from θ ⩽ π
2 .

2. Suppose |w1 − 1|+ |w2| ⩽ r0. Then it is observed that w1 ⩾ 1− r0 + |w2| ⩾ 0. Thus,

r =
√
w2

1 + w2
2 ⩾

√
(1− r0)2 + 2|w2|(|w2|+ 1− r0) ⩾ 1− r0 ,

where the second inequality holds because of r0 ⩽ 1. Then we can bound |w2| from below as

|w2| = r sin θ ⩾ (1− r0) sin θ ⩾
1− r0

2
θ , (19)

where the second inequality holds since θ ⩽ 2 sin θ for all θ ∈ [0, π/2]. Meanwhile, we bound θ
from above as

θ ⩽ tan θ =
|w2|
w1

⩽
(
1− r0
|w2|

+ 1

)−1

⩽
(
1− r0
r0

+ 1

)−1

= r0 , (20)

where the second inequality holds from w1 ⩾ 1− r0+ |w2|, and the third inequality holds based
on |w2| ⩽ r0. Then we obtain an upper bound of T11 as follows

|T11| ⩽ θ ⩽ 2|w2|
1− r0

⩽ 4ψ|w2|
(1− r0)(π − 2r0)

⩽ 2

(1− r0)(π − 2r0)
[sin(2ψ)+2ψ][|w1−1|+|w2|] ,

where the first inequality holds from the monotonicity of 1
2 sin(2ψ) + ψ and ψ ⩽ π

2 , the second
inequality holds from Eq. (19), and the third inequality holds based on ψ ⩾ π

2 − θ and Eq. (20).
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Combining the cases above, we have proven

|T11| ⩽ max

{
1

2r0
,

2

(1− r0)(π − 2r0)

}
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] .

Choosing r0 = 1
4

[
π + 6−

√
π2 + 4π + 36

]
, we obtain an upper bound of T11 as follows

|T11| ⩽
3

2
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] . (21)

Secondly, we provide an upper bound for T12. We claim and prove by discussion that

|w2| ⩽ 2
√
w2

1 + w2
2(|w1 − 1|+ |w2|) . (22)

1. Suppose w1 ⩽ 1/2. Then it is observed that |w1 − 1| ⩾ 1/2, which implies

|w2| ⩽
√
w2

1 + w2
2 ⩽

√
w2

1 + w2
2 · 2|w1 − 1| ⩽ 2

√
w2

1 + w2
2(|w1 − 1|+ |w2|) .

2. Suppose w1 ⩾ 1/2. Then one has
√
w2

1 + w2
2 ⩾ 1/2, which indicates

|w2| ⩽ |w1 − 1|+ |w2| ⩽ 2
√
w2

1 + w2
2(|w1 − 1|+ |w2|) .

From the definition of D2, one has π
2 ⩾ ψ ⩾ π

2 − θ ⩾ 0, which indicates

ψ ⩾ sinψ ⩾ sin
(π
2
− θ
)
= cos θ =

w1√
w2

1 + w2
2

. (23)

Then we obtain an upper bound of |T12| as

|T12| ⩽
2w1√
w2

1 + w2
2

(|w1−1|+|w2|) ⩽ 2ψ(|w1−1|+|w2|) ⩽ [sin(2ψ)+2ψ](|w1−1|+|w2|) , (24)

where the first inequality holds according to Eq. (22), and the second inequality holds based on
Eq. (23). Finally, combining Eqs. (21) and (24), we conclude

T1 ⩽
[∣∣[sin(2ψ) + 2ψ](w1 − 1)

∣∣+max{|T11|, |T12|}
]2 ⩽ 7π[sin(2ψ) + 2ψ]∥w − v∥2 ,

where the first inequality holds based on T11 ⩾ 0 and T12 ⩽ 0, and the second inequality holds
because of sin(2ψ) + 2ψ ⩽ π for any ψ ∈ [0, π/2]. Thus, we have completed the proof.

Lemma 18. Let T2 =
([

1
2 cos(2ψ)−

1
2 +

w2
1

w2
1+w

2
2

]
sgn(w2) + [sin(2ψ) + 2ψ]w2

)2
. If (w, ψ) ∈

D2, then we have
T2 ⩽ 7π[sin(2ψ) + 2ψ]∥w − v∥2 .

Proof. From cos θ = w1/
√
w2

1 + w2
2 , one has cos(π − 2θ) = 1− 2 cos2 θ = 1− 2w2

1/(w
2
1 + w2

2).
Thus, we have∣∣∣∣[12 cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2)

∣∣∣∣ = 1

2
| cos(2ψ)− cos(π − 2θ)| ⩽ ψ + θ − π

2
⩽ T11 ,

where the first inequality holds because of | cos a− cos b| ⩽ |a− b|, and the second inequality holds
based on the definition of T11 in Eq. (18) and sin(2ψ) ⩾ 0. Recalling the upper bound of T11 in
Eq. (21), we obtain

T2 ⩽
(∣∣∣∣[12 cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2)

∣∣∣∣+ |[sin(2ψ) + 2ψ]w2|
)2

⩽ 7π[sin(2ψ) + 2ψ]∥w − v∥2 ,

which completes the proof.
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C Proof of Theorem 2

In the main part of this section, we present the closed form of the loss, definition and properties
of the ideal region, and the detailed proof of Theorem 2. Subsection C.1 provides the optimization
behaviors. Subsection C.2 gives some convergence rate lemmas.

According to Lemma 8, the expected square loss Lcc can be calculated by

Lcc(w, ψw) =
1

2
B(w,w, ψw, ψw)−B(w,v, ψw, ψv) +

1

2
B(v,v, ψv, ψv) . (25)

For R ∈ (0, 1), ψl ∈ [0, δl], and ψu ∈ [π/2− δu, π/2], define

D1 = {(w, ψw) | ∥w − v∥∞ ⩽ R,ψw ∈ [ψl, ψu], θw,v ∈ [0, |ψw − ψv|]} ,
D2 = {(w, ψw) | ∥w − v∥∞ ⩽ R,ψw ∈ [ψl, ψu], θw,v ∈ (|ψw − ψv|, ψw + ψv)} .

Let D = D1 ∪D2 indicate the ideal region, i.e.,

D = {(w, ψw) | ∥w − v∥∞ ⩽ R,ψw ∈ [ψl, ψu], θw,v ∈ [0, ψw + ψv]} .

By spherical symmetry, we assume v = (1, 0) without loss of generality in the rest proof. For
conciseness, define sw = sin(2ψw) + 2ψw and sv = sin(2ψv) + 2ψv . The following lemma
discusses the properties of the ideal region, concerning the closeness of the region under gradient
descent and the probability that an initialization falls into this region.
Lemma 19. Let ψv ∈ [7π/20, 2π/5]. If we choose the parameters as

R =
1

25
, ψl = ψv −

109

100
R , ψu = ψv +

109

100
R , and 0 < η ⩽ 1

120
R ,

then all conditions in Lemmas 20-25 are satisfied. If w0 ∼ N (0, I2) and ψw,0 ∼ U(0, π/2), then

Pr [(w0, ψw,0) ∈ D] ⩾ 10−5 .

Proof. We first prove that all conditions in the lemmas are satisfied.

• Lemma 20. It is observed that the first condition holds from

η ⩽ 1

120
R =

1

120
· 1

25
< 2 .

According to ψu > ψv > π/4, we have ψv sin(2ψu) ⩽ ψu sin(2ψv), which implies

sv ⩾
ψvsu
ψu

=
ψvsu

ψv + 109R/100
⩾ 7πsu/20

7π/20 + 109R/100
⩾ (1−R)su ⩾ (1−R)sw ,

where the fourth inequality holds since sw is monotonic. Thus, the second condition is satisfied.
• Lemma 21. The first condition η < 2 has been satisfied above. It is observed that ψl ⩾ 7π/20−
109R/100. Thus, The second condition holds from ψl/20 ⩾ 7π/400 − 109R/2000 ⩾ R. The
third condition holds since

max{ψu − ψv, ψv − ψl} =
109R

100
⩽ 5Rψl

3
.

• Lemma 22. The only condition η < 2 has been satisfied.
• Lemma 23. The first condition holds because of R = 1/25 ⩽ 1/2. The second condition holds

based on cos2 ψv ⩾ cos2(2π/5) ⩾ 1/25. The third condition holds from η ⩽ R/120 ⩽ 3R/2.
• Lemma 24. The first condition R ⩽ 1/2 has been satisfied above. The second and third condi-

tions hold because of
π

3
min{ψu − ψv, ψv − ψl} =

π

3
· 109R

100
⩾ R

120
⩾ η .

• Lemma 25. The first condition R ⩽ 1/2 has been satisfied above. The second one holds from

arcsinR+ 9η ⩽ 101R

100
+

3R

40
⩽ 109R

100
= ψu − ψv .
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We then prove the second conclusion. Let p0 = Pr[(w0, ψw,0) ∈ D] for simplicity. Then we have

p0 = Pr[ψl ⩽ ψw,0 ⩽ ψu] · Pr[1−R ⩽ w1 ⩽ 1 +R] · Pr[−R ⩽ w2 ⩽ R]

=
109R

50
· 1
2
[erf(1 +R)− erf(1−R)] · erf(R)

⩾ 10−5 ,

where erf(x) denotes the error function. Thus, we have completed the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let R, ψl, and ψu be the same as those in Lemma 19. Suppose that
(w0, ψw,0) ∈ D. Then Lemma 19 implies (wt, ψw,t) ∈ D for any t ∈ N. The proof of conver-
gence is divided into several stages.

Step 1: w2 converges to 0. In stage I, we consider the convergence of w2,t when (w0, ψw,0) ∈ D.
From Lemmas 22 and 23, the optimization behaviors of w2 is the combination of minimizing a
contraction mapping or an almost absolute function. Thus, Lemma 26 with r1 = r2 = R, c3 =
sw/(2π), gl = (cos2 ψv −

√
2R)/(2π), and gu = 2/3 implies

|w2| ⩽
c22(cos

2 ψv −
√
2R)

4πc1t
⩽ c22

4πc1t
for t ∈ N+ . (26)

Step 2: ψw converges to ψv . In stage II, we prove the convergence of ψw,t when (w0, ψw,0) ∈ D.
From Lemmas 24 and 25, the convergence of ψw is limited by that of w2, i.e., ψw tends to the
global minimum with constant-order gradient when the error of ψw is larger than that of w2, while
becomes far away from the global minimum otherwise. Then Lemma 27 with r1 = r2 = 109R/100,
a = c22(cos

2 ψv −
√
2R)/(4πc1), gl = cos2 ψu/(4π), and gu = 9 indicates

|ψw − ψv| ⩽
[
c22(cos

2 ψv −
√
2R)

4πc1
+ 9c2

]
1

t
⩽ 10c22

c1t
for t ∈ N+ . (27)

Step 3: w1 converges to 1. In stage III, we investigate the convergence of w1,t when (w0, ψw,0) ∈
D. From Lemmas 20 and 21, the gradient points to the global minimum with a remainder controlled
by the error of w1 and ψw. Then Lemma 28 with dl = 1/4, du = 1/2, and e = 20c22/(πc1) leads to

|w1 − 1| ⩽ 20c32
πc1t

for t ∈ N+ . (28)

Step 3: the expected loss converges to 0. We now estimate the convergence of the expected square
loss when (w0, ψw,0) ∈ D. For any (w, ψw) ∈ D, define non-negative quantities ∆w = ∥w − v∥
and ∆ψ = |ψw − ψv|. We provide an upper bound for Lcc by discussion.

1. Suppose (w, ψw) ∈ D1. Then we have

4πLcc(w, ψw) = ∥w∥2sw − 2∥w∥∥v∥ cos θw,vsm + ∥v∥2sv
⩽ ∥w∥2(sv + s∆)− 2∥w∥∥v∥(1−∆2

w)(sv − s∆) + ∥v∥2sv
⩽ 4(∥w∥2 + 2∥w∥∥v∥)∆ψ + (sv + 2∥w∥∥v∥)∆2

w

⩽ 32∆ψ + 8∆2
w ,

where the first inequality holds from sw ⩽ sv + s∆, cos θw,v ⩾
√
1−∆2

w ⩾ 1 − ∆2
w, and

sm ⩾ sv−s∆ with s∆ = 2∆ψ+sin(2∆ψ), the second inequality holds since |∥w∥−∥v∥| ⩽ ∆2
w

and s∆ ⩽ 4∆ψ , and the third inequality holds based on ∥w∥ ⩽ 2 and sv ⩽ π.
2. Suppose (w, ψw) ∈ D2. Let θ = θw,v . Then one knows

4πLcc(w, ψw) = ∥w∥2sw + ∥v∥2sv
− ∥w∥∥v∥[2(ψw + ψv − θ) cos θ + sin(2ψw − θ) + sin(2ψv − θ)]

= sv(∥w∥ − ∥v∥)2 + (∥w∥2 − ∥w∥∥v∥ cos θ)(sw − sv)

+ ∥w∥∥v∥θ cos θ + 2∥w∥∥v∥sv(1− cos θ) .
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Then according to |∥w∥ − ∥v∥| ⩽ ∆w, sw − sv ⩽ 4∆ψ , θ ⩽ arcsin∆w ⩽ 2∆w, and
cos θ ⩾ 1−∆2

w, we have

4πLcc ⩽ 4
∣∣∥w∥2 − ∥w∥∥v∥ cos θ

∣∣∆ψ + 2∥w∥∥v∥ cos θ∆w + (1 + 2∥w∥∥v∥)sv∆2
w

⩽ 16∆ψ + 5∆w ,

where the second inequality hodls based on ∥w∥ ⩽ 2, sv ⩽ π, and ∆w ⩽
√
2R =

√
2/25.

Combining the cases above, one knows from ∆w ⩽ 5/8 that for any (w, ψw) ∈ D, the loss satisfies

Lcc(w, ψw) ⩽ 32∆ψ + 5∆w .

Then based on (wt, ψw,t) ∈ D and Eqs. (26)-(28), we obtain from c2 ⩾ 1 that

Lcc(wt, ψw,t) ⩽
320c22
c1t

+
5c22
4πc1t

+
100c32
πc1t

⩽ 400c32
c1t

,

which holds with probability at least 10−5 from Lemma 19. Thus, we have completed the proof.

C.1 Optimization behaviors

The following two lemmas consider the gradient with respect to w1 in D1 and D2, respectively.

Lemma 20. Letw1 = w1−η∇w1
Lcc(w, ψw) with (w, ψw) ∈ D1. If η ∈ (0, 2) and (1−R)sw ⩽ sv ,

then we have

∇w1
Lcc(w, ψw) =

sw
2π

(w1 − 1) +
1

2π
[sw −min{sw, sv}] and |w′

1 − 1| ⩽ R .

Proof. For any (w, ψw) ∈ D1, one has

∇w1
Lcc(w, ψw) =

sw
2π

[w1 −min{sw, sv}] =
sw
2π

(w1 − 1) + r , (29)

where r denotes a remainder defined by r = 1
2π [sw −min{sw, sv}]. Then Eq. (29) implies

|w′
1 − 1| ⩽

∣∣∣1− ηsw
2π

∣∣∣ |w1 − 1|+ |ηr| ⩽
(
1− ηsw

2π

)
R+

η

2π
[sw −min{sw, sv}] , (30)

where the first inequality holds from the triangle inequality, and the second inequality holds based
on 1− ηsw/(2π) ⩾ 0 and |w1 − 1| ⩽ R. We proceed to complete the proof by discussion.

• Suppose that min{sw, sv} = sw. Then Eq. (30) implies

|w′
1 − 1| ⩽

(
1− ηsw

2π

)
R ⩽ R ,

where the second inequality holds from η > 0 and sw ⩾ 0.
• Suppose that min{sw, sv} = sv . Then one knows from Eq. (30) that

|w′
1 − 1| ⩽

(
1− ηsw

2π

)
R+

η(sw − sv)

2π
⩽ R ,

where the second inequality holds because of (1−R)sw ⩽ sv .

Combining the cases above completes the proof.

Lemma 21. Let w1 = w1 − η∇w1
Lcc(w, ψw) with (w, ψw) ∈ D2. If η ∈ (0, 2), R ⩽ ψl/20 and

max{ψu − ψv, ψv − ψl} ⩽ 5Rψl/3, then we have

∇w1
Lcc(w, ψw) =

sw − θw,v
2π

(w1−1)+
1

4π
[(sw−sv)+2(θw,v−sin θw,v)] and |w′

1−1| ⩽ R .

Proof. For any (w, ψw) ∈ D2, the gradient of Lcc with respect to w1 can be calculated by

∇w1
Lcc =

sw − θw,v
2π

(w1− 1)+
1

4π
[(sw− sv)+2(θw,v − sin θw,v)] =

sw − θw,v
2π

(w1− 1)+ r ,
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where r denotes a remainder defined by r = [(sw− sv)+2(θw,v − sin θw,v)]/(4π). Then we have

|w′
1 − 1| ⩽

∣∣∣∣1− η(sw − θw,v)

2π

∣∣∣∣ |w1 − 1|+ |ηr| ⩽ R+ η

[
|r| − R(sw − θw,v)

2π

]
, (31)

where the first inequality holds from the triangle inequality, and the second inequality holds based
on η(sw − θw,v) ⩽ ηsw ⩽ 2π and |w1 − 1| ⩽ R. It is observed that

sw − θw,v ⩾ 7

2
ψl − θw,v ⩾ 7

2
ψl − 2R , (32)

where the first inequality holds based on sw ⩾ 2ψl + sin(2ψl) and sinψl ⩾ 3ψl/4 for ψl ⩽ π/4,
and the second inequality holds from θw,v ⩽ arcsinR ⩽ 2R. Meanwhile, one has

|r| ⩽ 1

4π
|sw − sv|+

1

2π
|θw,v − sin θw,v| ⩽

max{ψu − ψv, ψv − ψl}
π

+
2R3

3π
, (33)

where the first inequality holds from the triangle inequality, and the second inequality holds accord-
ing to the 4-Lipschitzness of 2θ + sin(2θ), θ − sin θ ⩽ θ3/6 for any θ ⩾ 0, and θw,v ⩽ 2R.
Substituting Eqs. (32) and (33) into Eq. (31), we obtain

|w′
1 − 1| ⩽ R+

η

12π

[
12max{ψu − ψv, ψv − ψl}+ 8R3 + 12R2 − 21Rψl

]
⩽ R ,

where the second inequality holds from max{ψu − ψv, ψv − ψl} ⩽ 5Rψl/3 and R ⩽ ψl/20 ⩽ 1.
Thus, we have completed the proof.

The following two lemmas focus on the gradient with respect to w2 in D1 and D2, respectively.
Lemma 22. Let w′

2 = w2 − η∇w2
Lcc(w, ψw) with (w, ψw) ∈ D1. If η ∈ (0, 2), then we have

|w′
2| ⩽

(
1− ηsw

2π

)
|w2| and |w′

2| ⩽ R .

Proof. For any (w, ψw) ∈ D1, one has ∇w2
Lcc(w, ψw) =

sww2

2π . Thus, we have

w′
2 =

(
1− ηsw

2π

)
w2 . (34)

According to sw ∈ [0, π] and η ∈ (0, 2), the coefficient 1− ηsw/(2π) is positive and smaller than 1.
Based on (w, ψw) ∈ D1, one knows |w2| ⩽ R. Then Eq. (34) implies

|w′
2| =

(
1− ηsw

2π

)
|w2| ⩽ R ,

which completes the proof.

Lemma 23. Let w′
2 = w2 − η∇w2

Lcc(w, ψw) with (w, ψw) ∈ D2. If R ⩽ 1/2,
√
2R ⩽ cos2 ψv ,

and η ⩽ 3R/2, then we have

cos2 ψv −
√
2R

2π
⩽ ∇w2Lcc(w, ψw)sgn(w2) ⩽

2

3
and |w′

2| ⩽ R .

Proof. For any (w, ψw) ∈ D2, the gradient of Lcc with respect to w2 can be calculated by

∇w2
Lcc(w, ψw) =

1

2π
sww2 +

1

4π

(
cos(2ψw) + cos(2ψv) +

2w2
1√

w2
1 + w2

2

)
sgn(w2) . (35)

Since (w, ψw) ∈ D2, one knows that |w1 − 1| ⩽ R and |w2| ⩽ R. Thus, we have

2(1−
√
2R) ⩽ 2(1−R)2√

(1−R)2 +R2
⩽ 2w2

1√
w2

1 + w2
2

⩽ 2(1 +R) ,

where the first inequality holds because of R ∈ [0, 1/2]. Then we have

cos(2ψw) + cos(2ψv) +
2w2

1√
w2

1 + w2
2

⩽ 1 + cos(2ψv) + 2(1 +R) ⩽ 5 , (36)
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where the second inequality holds based on R ⩽ 1/2. Meanwhile, one has

cos(2ψw)+cos(2ψv)+
2w2

1√
w2

1 + w2
2

⩾ −1+cos(2ψv)+2(1−
√
2R) = 2(cos2 ψv−

√
2R) . (37)

It is observed that 0 ⩽ sw|w2| ⩽ π
2 since sw ∈ [0, π] and |w2| ⩽ R ⩽ 1

2 . Then substituting Eqs. (36)
and (37) into Eq. (35), we obtain

cos2 ψv −
√
2R

2π
⩽ ∇w2

Lcc(w, ψw)sgn(w2) ⩽
1

4
+

5

4π
⩽ 2

3
.

Thus, one knows from Eq. (35) that

|w′
2| =

∣∣|w2| − η∇w2
Lcc(w, ψw)sgn(w2)

∣∣ ⩽ max{|w2|, η∇w2
Lcc(w, ψw)sgn(w2)} ⩽ R ,

where the first inequality holds from |a− b| ⩽ max{a, b} for non-negative numbers a and b, and the
second inequality holds based on |w2| ⩽ R and η ⩽ 3R/2. Thus, we have completed the proof.

The following two lemmas investigate the gradient with respect to ψw in D1 and D2, respectively.
Lemma 24. Let ψ′

w = ψw−η∇ψwLcc(w, ψw) with (w, ψw) ∈ D1. IfR ⩽ 1/2, η ⩽ π(ψu−ψv)/3,
and η ⩽ π(ψv − ψl)/3, then we have

cos2 ψu
4π

⩽ sgn(ψw − ψv)∇ψwLcc(w, ψw) ⩽
3

π
and ψ′

w ∈ [ψl, ψu] .

Proof. For any (w, ψw) ∈ D1, the gradient of Lcc with respect to ψw can be calculated by

∇ψwLcc(w, ψw) =

{
− 1

2π [1 + cos(2ψw)][1− ∥w − v∥2] , ψw < ψv ,
1
2π [1 + cos(2ψw)]∥w∥2 , ψw > ψv ,

where the gradient at ψw = ψv can be any subgradient. For any (w, ψw) ∈ D2, we have ψw ∈
[ψl, ψu], which indicates 2 cos2 ψu ⩽ 1 + cos(2ψw) ⩽ 2. Meanwhile, all points in D2 satisfies
1− 2R2 ⩽ 1− ∥w − v∥2 ⩽ 1 and (1−R)2 ⩽ ∥w∥2 ⩽ (1 +R)2 +R2. Thus, the gradient of Lcc

with respect to ψw can be bounded by

cos2 ψu
4π

⩽ sgn(ψw − ψv)∇ψwLcc(w, ψw) ⩽
3

π
,

where the first and second inequalities holds based on R ⩽ 1/2. Then ψ′
w satisfies

ψ′
w = ψw − η∇ψwLcc(w, ψw) ⩽ max

{
ψw, ψv +

3η

π

}
⩽ ψu ,

where the first inequality holds from discussing the relation between ψw and ψv , and the second
inequality holds based on ψw ⩽ ψu and η ⩽ π(ψu − ψv)/3. Meanwhile, one has

ψ′
w = ψw − η∇ψwLcc(w, ψw) ⩾ min

{
ψw, ψv −

3η

π

}
⩾ ψl ,

where the first inequality holds from discussing the relation between ψw and ψv , and the second
inequality holds based on ψw ⩾ ψl and η ⩽ π(ψv−ψl)/3. Thus, we have completed the proof.
Lemma 25. Let ψ′

w = ψw − η∇ψwLcc(w, ψw) with (w, ψw) ∈ D2. If R ⩽ 1/2 and arcsinR +
9η ⩽ ψu − ψv , then we have

−9 ⩽ −2
(π
2
− ψw

)2
−2
(π
2
− ψw

)
|w2| ⩽ ∇ψwLcc ⩽ −1

4

(π
2
− ψw

)2
and ψ′

w ∈ [ψl, ψu] .

Proof. For any (w, ψw) ∈ D1, the gradient of Lcc with respect to ψw can be calculated by

∇ψwLcc(w, ψw) =
∥w∥2

2π
[1 + cos(2ψw)]−

∥w∥
2π

[cos θw,v + cos(θw,v − 2ψw)] .

It is observed that the above expression is the same as the gradient of Lcr with respect to ψ in
Eq. (16). The only difference comes from the domain of w, which is ∥w − v∥ ⩽ R in Lemma 12
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and ∥w − v∥∞ ⩽ R here. Then according to ∥x∥ ⩽
√
2∥x∥∞ in R2, one knows from Lemma 12

that

−9 ⩽ −2
(π
2
− ψw

)2
− 2

(π
2
− ψw

)
|w2| ⩽ ∇ψwLcc(w, ψw) ⩽ −1

4

(π
2
− ψw

)2
,

where the first inequality holds according to |π/2−ψw| ⩽ π/2 and |w2| ⩽ 1, and the third inequality
holds based on R ⩽ 1/2. Then ψ′

w satisfies

ψ′
w ⩽ ψw + 9η ⩽ ψv + θw,v + 9η ⩽ ψu ,

where the second inequality holds from the condition θw,v ⩾ |ψw−ψv| in the definition of D2, and
the third inequality holds according to

θw,v ⩽ arcsinR ⩽ ψu − ψv − 9η .

Meanwhile, it is observed that the gradient is always negative, which implies ψ′
w ⩾ ψw ⩾ ψl. Thus,

we have completed the proof.

C.2 Convergence Rate Lemmas

This section presents some sufficient conditions for convergence with an inversely proportional rate.

Lemma 26. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R
indicates the convex domain satisfying B(x∗, r1) ⊂ K ⊂ B(x∗, r2). Suppose that there exist
constants c1, c3, gl, gu such that c1 ⩽ r1/gu and for any x ∈ K, at least one of the following holds.

1. |x′−x∗| ⩽ (1− c3η)|x−x∗| and (x′−x∗)(x−x∗) ⩾ 0 with x′ = x−η∇f(x) and η ∈ (0, c1].

2. gl ⩽ sgn(x− x∗)∇f(x) ⩽ gu for any x ̸= x∗ and |∇f(x∗)| ⩽ gu.

Then for any c2 ⩾ max{1/c3, 2r2/gl, 2c1gu/gl}, the sequence {xt}∞t=1 generated by gradient de-
scent xt+1 = xt − ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t} satisfies

xt ∈ K and |xt − x∗| ⩽ a

t
with a =

c22gl
2c1

.

Proof. Firstly, we prove xt ∈ K. Suppose xt ∈ K for t = k. We prove xk+1 ∈ K by discussion.

1. If the first condition holds, then xk+1 is a convex combination of xk and x∗. Thus, xk+1 ∈ K.
2. If the second condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then xk+1 is a convex

combination of xk and x∗. Thus, xk+1 ∈ K.
3. If the third condition holds and sgn(xk+1 − x∗) ̸= sgn(xk − x∗), then one knows from ηt ⩽ c1

and |∇f(x)| ⩽ gu that |xk+1 − x∗| ⩽ c1gu ⩽ r1, where the second inequality holds based on
c1 ⩽ r1/gu. Thus, B(x∗, r1) ⊂ K leads to xk+1 ∈ K.

Combining the cases above, x0 ∈ K and mathematical induction completes the proof of xt ∈ K.

Secondly, we prove |xt − x∗| ⩽ a/t. Let t0 = c2/c1. According to c2 ⩾ 2c1gu/gl ⩾ 2c1, one
knows t0 ⩾ 2. For t < t0, it is observed that

|xt − x∗| ⩽ r2 ⩽ a

t0
⩽ a

t
,

where the first inequality holds based on K ⊂ B(x∗, r2), the second inequality holds because of
a = c22gl/(2c1) ⩾ r2t0. Thus, the conclusion holds for any t < t0. Suppose that |xk − x∗| ⩽ a/k
holds for k ⩾ t0 − 1. We then prove |xk+1 − x∗| ⩽ a/(k + 1) by discussion.

1. If the first condition holds, then we have

|xk+1 − x∗| ⩽
(
1− c2c3

k + 1

)
a

k
⩽ a

k + 1
,

where the first inequality holds based on the first condition and the induction hypothesis, and the
second inequality holds from c2 ⩾ 1/c3. Thus, the conclusion holds for t = k + 1.
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2. If the second condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then one knows

|xk+1 − x∗| ⩽ a

k
− c2gl
k + 1

⩽ a

k + 1
,

where the first inequality holds from the induction hypothesis and the second condition, and the
second inequality holds because of

a

k
− c2gl
k + 1

− a

k + 1
=
a− c2glk

k(k + 1)
=
c2gl(t0/2− k)

k(k + 1)
⩽ 0 ,

where the first equality holds based on c2 ⩾ 1/c3, the second equality holds from the choice of
a and t0, and the first inequality holds from t0 ⩾ 2 and k ⩾ t0 − 1 ⩾ t0/2. Thus, the conclusion
holds for t = k + 1.

3. If the second condition holds and sgn(xk+1 − x∗) ̸= sgn(xk − x∗), then it is observed that

|xk+1 − x∗| ⩽ c2gu
k + 1

⩽ a

k + 1
,

where the first inequality holds from the second condition, and the second inequality holds based
on a = c22gl/(2c1) ⩾ c2gu. Thus, the conclusion holds for t = k + 1.

Combining the cases above, we have completed the proof.
Lemma 27. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R
indicates the convex domain satisfying B(x∗, r1) ⊂ K ⊂ B(x∗, r2). Let {θt}∞t=0 be a positive
sequence bounded by θt ⩽ a/t. Suppose that there exist constants gl, gu such that for any x ∈ K,
the following holds

1. If |xt − x∗| ⩾ θt, then gl ⩽ sgn(xt − x∗)∇f(xt) ⩽ gu.

2. If |xt − x∗| ⩽ θt, then |∇f(xt)| ⩽ gu.

Let c1 > 0, and c2 ⩾ max{2r2/gl, 2c1}. Suppose that the sequence {xt}∞t=1 generated by gradient
descent xt+1 = xt − ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t} satisfies xt ∈ K for any
t ∈ N+. Then the following holds for any t ∈ N+

|xt − x∗| ⩽ b

t
with b = max

{
2a+ c2gu,

c22gl
2c1

}
.

Proof. Let t0 = 2b/(c2gl) ⩾ c2/c1 ⩾ 2. For any 0 < t < t0, it is observed that

|xt − x∗| ⩽ r2 ⩽ c2gl
2

=
b

t0
⩽ b

t
.

Thus, the conclusion holds for 0 < t < t0. Suppose that |xk − x∗| ⩽ b/k holds for k ⩾ t0 − 1. We
then prove |xk+1 − x∗| ⩽ b/(k + 1) by discussion.

1. If the first condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then we have

|xk+1 − x∗| ⩽ |xk − x∗| − ηk+1gl ⩽
b

k
− c2gl
k + 1

⩽ b

k + 1
,

where the second inequality holds from the induction hypothesis, and the third inequality holds
based on b = c2glt0/2 and t0/2 ⩽ t0 − 1 ⩽ k. Thus, the conclusion holds for t = k + 1.

2. If the first condition holds and sgn(xk+1 − x∗) ̸= sgn(xk − x∗), then we have

|xk+1 − x∗| ⩽ ηk+1gu ⩽ c2gu
k + 1

⩽ b

k + 1
,

which implies that the conclusion holds for t = k + 1.
3. If the second condition holds, then one knows

|xk+1 − x∗| ⩽ |xk − x∗|+ ηk+1gu ⩽ a

k
+

c2gu
k + 1

⩽ b

k + 1
,

where the second inequality holds based on |xk+1 − x∗| ⩽ θk+1 ⩽ a/(k + 1), and the third
inequality holds because of b ⩾ 2a+ c2gu. Thus, the conclusion holds for t = k + 1.
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Combining the cases above, we have completed the proof.
Lemma 28. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R
indicates the convex domain satisfying K ⊂ B(x∗, R). Let {xt}∞t=1 denote the sequence generated
by gradient descent xt+1 = xt−ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t}, satisfying xt ∈ K
for t ∈ N+. Suppose that the gradient satisfies ∇f(xt) = d(xt − x∗) + rt, where dl ⩽ d ⩽ du and
|rt| ⩽ e/t. If c1 ⩽ 1/du and c2 ⩾ 2/dl, then we have

|xt − x∗| ⩽ c

t
with c = max

{
c2R

c1
, c2e

}
.

Proof. Let t0 = c2/c1. We prove the conclusion by mathematical induction.

1. Base case. For 0 < t ⩽ t0, it is observed that

|xt − x∗| ⩽ R ⩽ c

t0
⩽ c

t
.

Thus, the conclusion holds for 0 < t ⩽ t0.
2. Induction. Suppose that |xk − x∗| ⩽ c/k holds for k ⩾ t0 − 1. Then we have

|xk+1 − x∗| = |(1− dηk)(xk − x∗)− ηkrk| ⩽ (1− dηk)|xk − x∗|+ ηk|rk| ,
where the first inequality holds based on dηk ⩽ c1du ⩽ 1. Then the induction hypothesis leads
to

|xk+1 − x∗| ⩽
(
1− 2

k

)
c

k
+
c2e

k2
⩽ c

k + 1
,

where the first inequality holds according to c2dl ⩾ 2, and the second inequality holds based on
c ⩾ c2e. Thus, the conclusion holds for t = k + 1.

Therefore, mathematical induction completes the proof.

D Proof of Theorem 4

We begin the proof with two lemmas. For any non-zero vector a in R2 and θ ∈ [0, π], define
S(a, θ) = {x ∈ R2 | θx ∈ [θa − θ, θa + θ]} as the sector region with central angle 2θ that is
symmetric with respect to a. Let Na,θ represent the truncated standard Gaussian distribution on
S(a, θ), of which the probability density function is

p(x) =

{
1
2θ e

− 1
2∥x∥

2

, x ∈ S(a, θ) ,
0 , otherwise .

The following lemma provides a lower bound for the expected squared inner product on S(a, θ).
Lemma 29. Let d = 1. For any w ∈ R2d, non-zero a ∈ R2d, and θ ∈ [0, π/2], we have

Ex∼Na,θ

[(
w⊤x

)2] ⩾ θ2

3
∥w∥2 .

Proof. Let θw indicate the phase of w, i.e., w = ∥w∥(sin θw + cos θwi). Then calculating the
expectation in the polar coordinate system leads to

Ex∼Na,θ

[(
w⊤x

)2]
=

∥w∥2

2θ

∫ +∞

0

∫ θa+θ

θa−θ
r3(cos θw cosϕ+ sin θw sinϕ)2e−

1
2 r

2

dϕ dr

=
∥w∥2

θ

[
θ +

1

2
sin(2θ) cos(2θa,w)

]
,

(38)

where the second equality holds based on integrating over r and ϕ separately, and the identity
cos(θa − θw) = cos θa,w. The expectation in Eq. (38) can be further bounded by

Ex∼Na,θ

[(
w⊤x

)2]
= ∥w∥2

[(
1− 1

2θ
sin(2θ)

)
+

1

θ
sin(2θ) cos2 θa,w

]
⩾
(
1− 1

2θ
sin(2θ)

)
∥w∥2

⩾ θ2

3
∥w∥2 ,
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where the first inequality holds according to θ ∈ [0, π/2], and the second inequality holds because
of sin(x) ⩽ x− x3/12 for all θ ∈ [0, π/2]. Thus, we have completed the proof.

The following lemma provides a lower bound for expressing a complex-valued vector with four
real-valued vectors under a symmetric constant.
Lemma 30. Let vk ∈ Rd with k ∈ [4] and v ∈ Rd. If v1 + v3 = v2 + v4, then we have

4∑
k=1

∥vi − v · I(k = 1)∥2 ⩾ 1

4
∥v∥2 .

Proof. According to the generalized mean inequality, one knows

4∑
k=1

∥vi−v·I(k = 1)∥2 ⩾ 1

4

(
4∑
k=1

∥vi − v · I(k = 1)∥

)2

⩾ 1

4
∥(v1−v)−v2+v3−v4∥2 =

1

4
∥v∥2 ,

where the second inequality holds because of the triangle inequality, and the first equality holds
based on the condition v1 + v3 = v2 + v4. Thus, we have completed the proof.

We are now ready to prove Theorem 4.

Proof of Theorem 4. We define Nα,W =
∑n
i=1 αiτ(w

⊤
i x) for simplicity. From d = 1, the weight

vector wi is a 2-dimensional real-valued vector. Let θwi = arctan(w−1
i,1wi,2) ∈ (−ψ, 2π−ψ] denote

the phase of wi. We assume θv = 0 without loss of generality. Denote by ΘW the π/2-symmetrical
phase set induced from W and ψ, i.e.,

ΘW =

{
θwi +

(j − 1)π

2

∣∣∣∣ i ∈ [n], j ∈ [4]

}
∪
{
iψ +

(j − 1)π

2

∣∣∣∣ i ∈ {−1,+1}, j ∈ [4]

}
.

It is observed that there is an integer m ⩽ n + 2 such that |ΘW| = 4m. We sort all phases in ΘW

as
ΘW = {θi}4mi=1 with − ψ < θ1 < · · · < θ4m = 2π − ψ .

Let Nβ,U represent an arbitrary two-layer RVNN with weight phases from ΘW, i.e.,

Nβ,U(x) =

4m∑
i=1

βiτ(u
⊤
i x) with θui = θi .

It is observed that Nβ,U degenerates to Nα,W with suitable parameters. Thus, the expected square
loss Lrc can be bounded as

Lrc(α,W) ⩾ 1

2
inf
β,U

Ex∼N (0,I)

[(
Nβ,U(x)− σψ(v

⊤
C xC)

)2]
=

1

2
inf
β,U

4m∑
i=1

∆θi
π

Ex∼N (ai,∆θi)

[(
Nβ,U(x)− σψ(v

⊤
C xC)

)2]
,

(39)

where ∆θi = (θi − θi−1)/2 and ai = e(θi−∆θi)i with θ0 = θ4(n+1). The indices can be divided
into m groups as Ii = {i + (k − 1)m | k ∈ [4]} with i ∈ [m]. Denote by iψ the index of ψ, i.e.,
θiψ = ψ. Then Eq. (39) becomes

Lrc(α,W) ⩾ 1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

Ex∼N (aj ,∆θj)

[(
Nβ,U(x)− σψ(v

⊤
C xC)

)2]
=

1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

Ex∼N (aj ,∆θj)

[(
(vj − v · I(j ⩽ iψ))

⊤x
)2]

,

(40)

where the first inequality holds since ∆θj remains the same in Ii, the second inequality holds based
on the activation regions of ReLU and zReLU, and the definition of vj as follows

vj =

j+m−1∑
l=j−m

βϕ(l)uϕ(l) with ϕ(l) =

{
l + 4m , l ⩽ 0 ,
l , 0 < l ⩽ 4m ,
l − 4m , l > 4m .

(41)
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Applying Lemma 29 to Eq. (40), we obtain

Lrc(α,W) ⩾ 1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

(∆θj)
2

3
∥vj − v · I(j ⩽ iψ)∥2

⩾ 1

2
inf
β,U

min{iψ,m}∑
i=max{1,iψ−m+1}

(∆θi)
3

3π

4∑
k=1

∥vi,k − v · I(k = 1)∥2 ,

where the second inequality holds based on the definition of vi,k = vi+(k−1)(n+1) and ∆θj = ∆θi
for any j ∈ Ii. Based on Eq. (41), one has vi,1 + vi,3 = vi,2 + vi,4. Then Lemma 30 implies

Lrc(α,W) ⩾ 1

2
inf
β,U

min{iψ,m}∑
i=max{1,iψ−m+1}

(∆θi)
3

3π
· 1
4
∥v∥2

⩾ ∥v∥2

24π(max{1, iψ −m+ 1} −min{iψ,m})2

 min{iψ,m}∑
i=max{1,iψ−m+1}

∆θi

3

⩾ ∥v∥2 min{2ψ, π − 2ψ}3

24π(n+ 2)2
,

where the second inequality holds based on the generalized mean inequality, and the third one holds
from max{1, iψ −m+ 1} −min{iψ,m} ⩽ m ⩽ n+ 2. Thus, we have completed the proof.

E Proof of Theorem 6

We begin with a lemma providing a lower bound for convergence.
Lemma 31. If there exists a constant c such that

⟨∇f(w),w − v⟩ ⩽ c∥w − v∥2 ,
then w′ = w − η∇f(w) with η ∈ (0, 1/(2c)) satisfies

∥w′ − v∥ ⩾
√
1− 2cη∥w − v∥ .

Proof. From the updating rule, it is observed that

∥w′ − v∥2 ⩾ ∥w − v∥2 − 2η⟨w − v,∇f(w)⟩ ⩾ (1− 2cη)∥w − v∥2 ,
which completes the proof.

We then prove Theorem 6.

Proof of Theorem 6. Denote by R = ∥w0 − v∥. The convergence analysis consists of several
stages.

Stage 1: the error of ψ decreases below a threshold fast. By the same arguments as those in
the proof of Theorem 1, η ∈ (0, 1/(12π)) indicates (wt, ψt) ∈ D for any t ∈ N. Recalling the
convergence of ψ in Eq. (7), we have ψt ⩾ π/4 when t ⩾ ⌈16η−1(1 − R2)−1⌉. From Eq. (4), one
knows ∇ψLcr(wt, ψt) ⩾ −6(ψ∗ − ψt). Then we have

⟨∇ψLcr(wt, ψt), ψ
∗ − ψt⟩ ⩾ −6(ψ∗ − ψt)

2 .

Then we obtain from η ∈ (0, 1/12) and Lemma 31 that

ψ∗ − ψt ⩾ (1− 12η)t/2(ψ∗ − ψ0) . (42)

Thus, one has

(1− 12η)t/2(ψ∗ − ψ0) ⩽ ψ∗ − ψt ⩽
π

4
with t ⩾ T1 = 16η−1(1−R2)−1 .

Step 2: both errors of w and ψ decrease below small constants fast. Based on Eq. (8), we have

∥wt − v∥ ⩽
(
1− η

48

)t−T1

for t ⩾ T1 , (43)

32



which, together with Eqs. (7) and (42), implies that

(1− 12η)t/2(ψ∗ − ψ0) ⩽ ψ∗ − ψt ⩽
1

384
and |w2| ⩽ ∥wt − v∥ ⩽ 1

384
,

with t ⩾ T2 = max

{
T1 +

ln 384

ln(1 + η/48)
,

3200π

η(1−R2)

}
.

(44)

Step 3: w converges faster than ψ. For any t ⩾ T2, Lemmas 11 and 12 imply

⟨∇ψLcr(wt, ψt), ψt − ψ∗⟩ ⩽ 2(ψ∗ − ψt)
3 + 2(ψ∗ − ψt)

2|w2,t| ⩽
1

96
(ψ∗ − ψt)

2 ,

where the second inequality holds based on Eq. (44). Then Lemma 31 indicates

ψ∗ − ψt+1 ⩾
√
1− η/48(ψ∗ − ψt) for t ⩾ T2 ,

which, together with Eq. (43), indicates

|ww,t| ⩽ ∥wt − v∥ ⩽ ψ∗ − ψt with t ⩾ T3 = 2T1 +
T2 ln(1− 12η) + 2 ln(ψ∗ − ψ0)

ln(1− η/48)
. (45)

Step 4: ψ converges with an inversely proportional rate. For any t ⩾ T3, it is observed from
Lemmas 11, 12, and Eq. (45) that

∇ψLcr(wt, ψt) ⩾ −4(ψ∗ − ψ)2 .

Let at = 4η(ψ∗−ψt). Then the updating rule implies at+1 ⩾ at(1−at). Choosing η ∈ (0, 1/(4π))
guarantees at ∈ [0, 1/2]. Then Lemma 14 indicates

ψ∗ − ψt ⩾
(1− 12η)T3/2(ψ∗ − ψ0)

t− T3 + 1
for t ⩾ T3 . (46)

Step 5: the loss converges to 0 with an inversely proportional rate. Define non-negative quanti-
ties ∆w = ∥w − v∥ and ∆ψ = ψ∗ − ψ. We provide a lower bound for Lcr by discussion.

1. Suppose (w, ψ) ∈ D1. Then we have

Lcr(w, ψ) ⩾
1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w) =

1

8π
∆3
ψ +

1

8π
∆2

w(2π −∆3
ψ) ⩾

1

8π
∆3
ψ , (47)

where the first inequality holds based on sin(2ψ)+2ψ = sin(2∆ψ)+2ψ∗−2∆ψ ⩽ 2ψ∗−∆3
ψ/2

for any ψ ∈ [0, π/2], and the second inequality holds from ∆ψ ⩽ π/2.
2. Suppose (w, ψ) ∈ D2. The expected loss can be rewritten as

Lcr(w, ψ) =
1

4
− 1

4π
[sin(2ψ) + 2ψ](1−∆2

w)

+
1

4π
[(cos(2ψ)− 1)|w2|+ (sin(2ψ) + 2ψ + 2θ − 2ψ∗)w1]

⩾ 1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w) +

1

4π
[(cos(2ψ)− 1)|w2|]

⩾ 1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w)− 1

2π
∆w

⩾ 1

8π
∆3
ψ − 1

2π
∆w ,

(48)

where the first inequality holds from sin(2ψ)+2ψ ⩽ 2ψ∗−∆3
ψ/2 and sin(2ψ)+2ψ+2θ−2ψ∗ ⩾

0, the second inequality holds based on cos(2ψ)− 1 ⩾ −2 and |w2| ⩽ ∆w.

Combining Eqs. (47) and (48), one knows that the following holds for any (w0, ψ0) ∈ D and t ⩾ T3

Lcr(wt, ψt) ⩾
1

8π
∆3
ψ,t −

1

2π
∆w,t ⩾

(1− 12η)3T3/2(ψ∗ − ψ0)
3

8π(t− T3 + 1)3
− 1

2π

(
1− η

48

)t−T3

,

where the second inequality holds from Eqs. (43) and (46). Thus, we have completed the proof.
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F Simulation Experiments

Experimental settings. A training set of size 7,000 and a test set of size 3,000 are generated by a
randomly initialized target neuron (can be a real-valued or a complex-valued neuron). After random
initialization, a complex-valued neuron and a real-valued neuron are trained by gradient descent
with the empirical mean square loss and a learning rate of 0.1 for 100 epochs (or 300 epochs when
the loss does not converge).

Experimental results. It should be noticed that a complex-valued neuron cannot always learn
a target neuron. From the theoretical formulation, our convergence rate holds with a small con-
stant probability. From the loss landscape, there exist constant pieces in the parameter space, i.e.,
the complex-valued neuron does not learn anything after initialization. Thus, we cannot expect
a complex-valued neuron to learn a target neuron all the time. In the experiments, we train the
complex-valued neuron with several random initializations and find that our theoretical conclusions
occur in experiments. This phenomenon verifies our theories and also motivates a novel learning
algorithm for CVNNs, as discussed in the conclusion part.
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